Skip to main content
Log in

Boundary Value Problems for Nonlinear Implicit Caputo–Hadamard-Type Fractional Differential Equations with Impulses

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the authors establish the existence and uniqueness of solutions for a class of boundary value problem for nonlinear implicit fractional differential equations with impulses and Caputo–Hadamard type fractional derivatives. The stability of this problem is also studied. The arguments are based on the Banach contraction principle and Schaefer’s fixed point theorem. Two examples are presented to show the applicability of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)

    MATH  Google Scholar 

  3. Bainov, D.D., Hristova, S.G.: Integral inequalities of Gronwall type for piecewise continuous functions. J. Appl. Math. Stoch. Anal. 10, 89–94 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)

    Book  MATH  Google Scholar 

  5. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387–400 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, 1–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Egbunonu, P., Guay, M.: Identification of switched linear systems using subspace and integer programming techniques. Nonlinear Anal. Hybrid Syst. 1, 577–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graef, J.R., Henderson, J., Ouahab, A.: Impulsive Differential Inclusions. A Fixed Point Approach, De Gruyter Series in Nonlinear Analysis and Applications, vol. 20, De Gruyter, Berlin (2013)

  9. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  10. Hadamard, J.: Essai sur l’étude des fonctions données par leurs developpement de Taylor. J. Math. Pures Appl. Ser. 8, 101–186 (1892)

    MATH  Google Scholar 

  11. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38, 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam (2006)

  14. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Worlds Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  15. Lygeros, J., Godbole, D.N., Sastry, S.: A verified hybrid controller for automated vehicles. IEEE Trans. Autom. Control 43, 522–539 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  17. Pepyne, D.L., Cassandras, C.G.: Optimal control of hybrid systems in manufacturing. Proc. IEEE 7, 1108–1123 (2000)

    Article  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  20. Tariboon, J., Ntouyas, S.K., Thaiprayoon, C.: Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions. Adv. Math. Phys. 2014, 1–15 (2014). doi:10.1155/2014/372749

  21. Vaadrager, F., Van Schuppen, J. (eds.): Hybrid Systems, Computation and Control. Lecture Notes in Computer Sciences, vol. 1569. Springer, New York (1999)

  22. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Trans. Autom. Control 38, 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  23. Wang, J., Feckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equations of mixed type and optimal controls. Optimization 55, 141–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yukunthorn, W., Ntouyas, S.K., Tariboon, J.: Nonlinear fractional Caputo–Langevin equation with nonlocal Riemann–Liouville fractional integral conditions. Adv. Differ. Equ. 315, 18 (2014)

    MathSciNet  Google Scholar 

  26. Yukunthorn, W., Ahmad, B., Ntouyas, S.K., Tariboon, J.: On Caputo–Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions. Nonlinear Anal. Hybrid Syst. 19, 77–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Graef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benchohra, M., Bouriah, S. & Graef, J.R. Boundary Value Problems for Nonlinear Implicit Caputo–Hadamard-Type Fractional Differential Equations with Impulses. Mediterr. J. Math. 14, 206 (2017). https://doi.org/10.1007/s00009-017-1012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1012-9

Mathematics Subject Classification

Keywords

Navigation