Skip to main content
Log in

Solutions of Inhomogeneous Generalized Moisil–Teodorescu Systems in Euclidean Space

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Let \(\mathbb R_{0, m+1}^{(s)}\) be the space of s-vectors (\(0\le s\le m+1\)) in the Clifford algebra \(\mathbb R_{0, m+1}\) constructed over the quadratic vector space \(\mathbb R^{0, m+1}\), let \(r, p, q\in \mathbb N\) with \(0\le r\le m+1\), \(0\le p\le q\) and \(r+2q\le m+1\) and let \(\mathbb R_{0, m+1}^{(r,p,q)}=\sum _{j=p}^q\bigoplus \mathbb R_{0, m+1}^{(r+2j)}\). Then a \(\mathbb R_{0, m+1}^{(r,p,q)}\)-valued smooth function F defined in an open subset \(\Omega \subset \mathbb R^{m+1}\) is said to satisfy the generalized Moisil–Teodorescu system of type (rpq) if \(\partial _x F=0\) in \(\Omega \), where \(\partial _x\) is the Dirac operator in \(\mathbb R^{m+1}\). To deal with the inhomogeneous generalized Moisil–Teodorescu systems \(\partial _x F=G\), with a \(\sum _{j=p}^{q} \bigoplus {\mathbb {R}}^{(r+2j-1)}_{0,m+1}\)-valued continuous function G as a right-hand side, we embed the systems in an appropriate Clifford analysis setting. Necessary and sufficient conditions for the solvability of inhomogeneous systems are provided and its general solution described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu Blaya, R., Bory Reyes, J., Delanghe, R., Sommen, F.: Generalized Moisil-Théodoresco systems and Cauchy integral decompositions. Int. J. Math. Math. Sci. 2008, 19 (2008). (Article ID746946 )

    Article  Google Scholar 

  2. Abreu Blaya, R., Bory Reyes, J., Luna-Elizarrarás, M.E., Shapiro, M.: \(\bar{\partial }\)-problem in domains of \(\mathbb{C}^2\) in terms of hyper-conjugate harmonic functions. Complex Var. Elliptic Equ. 57(7–8), 743–749 (2012)

    Article  MathSciNet  Google Scholar 

  3. Abreu Blaya, R., Bory Reyes, J.: \({\overline{\partial }}\)-problem for an overdetermined system con two higher dimensional variables. Arch. Math. (Basel) 97(6), 579–586 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bory Reyes, J., Abreu Blaya, R., Pérez-de la Rosa, M.A., Schneider, B.: A quaternionic treatment of inhomogeneous Cauchy-Riemann type systems in some traditional theories. Compl. Anal. Oper. Theory. 11(5), 1017–1034 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bory Reyes, J., Delanghe, R.: On the structure of solutions of the Moisil-Théodoresco system in Euclidean space. Adv. Appl. Clifford Algebra 19(1), 15–28 (2009)

    Article  Google Scholar 

  6. Bory Reyes, J., Delanghe, R.: On the solutions of the Moisil Théodoresco system. Math. Methods Appl. Sci. 31(12), 1427–1439 (2008)

    Article  MathSciNet  Google Scholar 

  7. Brackx, F., Delanghe, R., De Schepper, H.: Hardy spaces of solutions of generalized Riesz and Moisil-Teodorescu systems. Complex Var. Elliptic Equ. 57(7–8), 771–785 (2012)

    Article  MathSciNet  Google Scholar 

  8. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, Boston (1982)

    MATH  Google Scholar 

  9. Brackx, F., Delanghe, R., Sommen, F.: On conjugate harmonic functions in Euclidean space. Math. Methods Appl. Sci. 25, 1553–1562 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brackx, F., Delanghe, R., Sommen, F.: Differential forms and/or multi-vector functions. Cubo 7(2), 139–169 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Colombo, F., Luna-Elizarrarás, M.E., Sabadini, I., Shapiro, M., Struppa, D.C.: A quaternionic treatment of the inhomogeneous div-rot system. Mosc. Math. J. 12(1), 37–48 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cialdea, A.: On the theory of self-conjugate differential forms. Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996). Atti Sem. Mat. Fis. Univ. Modena 46(suppl.), 595–620 (1998)

    MathSciNet  Google Scholar 

  13. Delanghe, R.: On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52(10–11), 1047–1061 (2007)

    Article  MathSciNet  Google Scholar 

  14. Delanghe, R.: On Moisil–Théodoresco systems in euclidean space. AIP Conf. Proc. 1048(1), 17–20 (2008)

    Article  ADS  Google Scholar 

  15. Delanghe, R.: On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space. Cubo 12(2), 145–167 (2010)

    Article  MathSciNet  Google Scholar 

  16. Delanghe, R., Lávička, R., Souček, V.: On polynomial solutions of generalized Moisil-Théodoresco systems and Hodge-de Rham systems. Adv. Appl. Clifford Algebr. 21(3), 521–530 (2011)

    Article  MathSciNet  Google Scholar 

  17. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-valued Functions—A Function Theory for the Dirac Operator. Kluwer Academic, Dordrecht (1992)

    Book  Google Scholar 

  18. Delgado, B.B., Porter, M.R.: General solution of the inhomogeneous div-curl system and consequences. Adv. Appl. Clifford Algebra 27(4), 3015–3037 (2017)

    Article  MathSciNet  Google Scholar 

  19. Eelbode, D., Sommen, F.: Differential forms in Clifford analysis. Methods of complex and Clifford analysis, pp. 41–69. SAS, Delhi (2004)

    MATH  Google Scholar 

  20. Fueter, R.: Die Funktionentheorie der Differentialgleichungen \(\Delta u=0\) und \(\Delta \Delta u=0\) mit vier reellen Variablen. (German) Comment. Math. Helv. 7(1), 307–330 (1934)

    Article  MathSciNet  Google Scholar 

  21. Gilbert, J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambrigde University Press, Cambridge (1991)

    Book  Google Scholar 

  22. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice. Wiley, Chichester (1997)

    MATH  Google Scholar 

  23. Gürlebeck, K., Habetha, K., Sprössig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  24. Lavicka, R.: Orthogonal Appell bases for Hodge-de Rham systems in Euclidean spaces. Adv. Appl. Clifford Algebr. 23(1), 113–124 (2013)

    Article  MathSciNet  Google Scholar 

  25. Malaspina, A.: The Rudin-Carleson theorem for non-homogeneous differential forms. Int. J. Pure Appl. Math. 1(2), 203–215 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Moisil, Gr, Théodoresco, N.: Fonctions holomorphes dans l’espace. Mathema-tica Cluj 5, 142–159 (1931)

    MATH  Google Scholar 

  27. Nolder, C.A.: Conjugate harmonic functions and Clifford algebras. J. Math. Anal. Appl. 302(1), 137–142 (2005)

    Article  MathSciNet  Google Scholar 

  28. Porter, M.R., Shapiro, M., Vasilevski, N.L.: Quaternionic differential and integral operators and the \(\overline{\partial }\)-problem. J. Nat. Geom. 6(2), 101–124 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Porter, M.R., Shapiro, M., Vasilevski, N.L.: On the analogue of the \(\overline{\partial }\)-problem in quaternionic analysis. Clifford Algebras and Their Applications in Mathematical Physics (Deinze, 1993), Fundamental Theories of Physics, vol. 55, pp. 167–173. Kluwer Academic Publishers Group, Dordrecht (1993)

    Chapter  Google Scholar 

  30. Shapiro, M.: On the conjugate harmonic functions of M. Riesz–E. Stein–G. Weiss. Topics in complex analysis, differential geometry and mathematical physics (St. Konstantin, 1996), pp. 8–32. World Science, River Edge (1997)

    Google Scholar 

  31. Sirkka-Liisa, E., Heikki, O.: On Hodge-de Rham systems in hyperbolic Clifford analysis. AIP Conf. Proc. 1558, 492–495 (2013)

    ADS  Google Scholar 

  32. Souchek, V.: On massless Field equation in higher dimensions. In: 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering. K. Gürlebeck and C. Könke (eds.) Weimar, Germany, 07–09 July (2009)

  33. Souchek, V.: Representation theory in clifford analysis. In: Alpay, D. (ed.) Operator Theory, pp. 1509–1547. Springer, Basel (2015)

    Chapter  Google Scholar 

  34. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85(2), 199–224 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Pérez-de la Rosa.

Additional information

Communicated by Frank Sommen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by Instituto Politécnico Nacional in the framework of SIP programs and by Universidad de las Américas Puebla, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bory-Reyes, J., Pérez-de la Rosa, M.A. Solutions of Inhomogeneous Generalized Moisil–Teodorescu Systems in Euclidean Space. Adv. Appl. Clifford Algebras 29, 27 (2019). https://doi.org/10.1007/s00006-019-0946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-0946-3

Mathematics Subject Classification

Keywords

Navigation