Skip to main content
Log in

General Solution of the Inhomogeneous Div-Curl System and Consequences

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We consider the inhomogeneous div-curl system (i.e. to find a vector field with prescribed div and curl) in a bounded star-shaped domain in \(\mathbb {R}^3\). An explicit general solution is given in terms of classical integral operators, completing previously known results obtained under restrictive conditions. This solution allows us to solve questions related to the quaternionic main Vekua equation \(DW=(Df/f)\overline{W}\) in \(\mathbb {R}^3\), such as finding the vector part when the scalar part is known. In addition, using the general solution to the div-curl system and the known existence of the solution of the inhomogeneous conductivity equation, we prove the existence of solutions of the inhomogeneous double curl equation, and give an explicit solution for the case of static Maxwell’s equations with only variable permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  2. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)

  3. Astala, K., Päivärinta, L.: A boundary integral equation for Calderón’s inverse conductivity problem. In: Proceedings of the 7th International Conference on Harmonic Analysis, Collectanea Mathematica, pp. 127–139 (2006)

  4. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  5. Atfeh, B., Baratchart, L., Leblond, J., Partington, J.R.: Bounded extremal and Cauchy–Laplace problems on the sphere and shell. J. Fourier Anal. Appl. 16, 177–203 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergman, S.: Integral Operators in the Theory of Linear Partial Differential Equations. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 23, Springer-Verlag, Berlin, Heidelberg (1969)

  7. Bers, L.: Theory of Pseudo-Analytic Functions. New York University, New York (1953)

    MATH  Google Scholar 

  8. Bory Reyes, J., Abreu Blaya, R., Pérez-de la Rosa, M.A., Schneider, B.: A quaternionic treatment of inhomogeneous Cauchy–Riemann type systems in some traditional theories. Complex Anal. Oper. Theory 11, 1017–1034 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bossavit, A.: Computational Electromagnetism. Academic Press, Boston (1998)

    MATH  Google Scholar 

  10. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Advanced Publishing Program, Boston (1982)

    MATH  Google Scholar 

  11. Brackx, F., de Schepper, H.: Conjugate harmonic functions in Euclidean space: a spherical approach. Comput. Methods Funct. Theory 6(1), 165–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colombo, F., Luna-Elizarrarás, M.E., Sabadini, I., Shapiro, M., Struppa, D.C.: A quaternionic treatment of the inhomogeneous div-rot system. Mosc. Math. J. 12(1), 37–48 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  15. Feynman, R.: The Feynman Lectures on Physics, 2nd edn. Addison-Wesley, Boston (2005)

    Google Scholar 

  16. Forster, O.: Lectures on Riemann Surfaces. Graduate Texts in Mathematics, vol. 81. Springer, Berlin (1981)

    Book  Google Scholar 

  17. González-Cervantes, J.O., Luna-Elizarrarás, M.E., Shapiro, M.: On the Bergman theory for solenoidal and irrotational vector fields, I: general theory. Oper. Theory Adv. Appl. 210, 79–106 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Griffiths, D.J.: Introduction to Electrodynamics, 3rd edn. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  19. Grigor’ev, Y.: Three-dimensional quaternionic analogue of the Kolosov-Muskhelishvili formulae. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds.) Hypercomplex Analysis: New Perspectives and Applications. Trends in Mathematics, pp. 145–166. Birkhäuser/Springer, Cham (2014)

  20. Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Berlin (1990)

    Book  MATH  Google Scholar 

  21. Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997)

    MATH  Google Scholar 

  22. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  23. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  24. Jiang, B.: The Least-Squares Finite Element Method. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  25. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  26. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. Dover Publications, Inc, Mineola (1968)

    MATH  Google Scholar 

  27. Kravchenko, V.V.: Applied Pseudoanalytic Function Theory. Frontiers in Mathematics. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  28. Kravchenko, V.V.: Applied Quaternionic Analysis. Heldermann Verlag, Lemgo (2003)

    MATH  Google Scholar 

  29. Kravchenko, V.V., Shapiro, M.V.: Integral Representations for Spatial Models of Mathematical Physics. Addison Wesley Longman Ltd, Harlow (1996)

    MATH  Google Scholar 

  30. Kravchenko, V.V., Tremblay, S.: Spatial pseudoanalytic functions arising from the factorization of linear second order elliptic operators. Math. Methods Appl. Sci. 34, 1999–2010 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Mikhailov, V.P.: Partial Differential Equations. Mir Publishers, Moscow (1978)

    Google Scholar 

  32. Porter, R.M., Shapiro, M.V., Vasilevski, N.L.: On the analogue of the \(\bar{\partial }\)-problem in quaternionic analysis. In: Clifford Algebras and Their Applications in Mathematical Physics (Deinze, 1993), Fundamental Theories of Physics, vol. 55, pp. 167–173. Kluwer Academic Publishers Group, Dordrecht (1993)

  33. Shapiro, M.V.: On the conjugate harmonic function of M. Riesz-E. Stein-G. Weiss. In: Topics in Complex Analysis Differential Geometry and Mathematical Physics, World Scientific, Singapore, pp. 8–32 (1997)

  34. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  35. Sudbery, A.: Quaternionic Analysis. Math. Proc. Camb. Phil. Soc. 85, 99–225 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vekua, I.N.: Generalized Analytic Functions. Moscow: Nauka (in Russian) (1959). (English translation Oxford: Pergamon Press (1962))

  37. Weyl, H.: The method of orthogonal projection in potential theory. Duke Math. J. 7, 411–444 (1940)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Porter.

Additional information

Communicated by Wolfgang Sprössig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, B.B., Porter, R.M. General Solution of the Inhomogeneous Div-Curl System and Consequences. Adv. Appl. Clifford Algebras 27, 3015–3037 (2017). https://doi.org/10.1007/s00006-017-0805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0805-z

Keywords

Mathematics Subject Classification

Navigation