Skip to main content
Log in

Some Ultraspheroidal Monogenic Clifford Gegenbauer Jacobi Polynomials and Associated Wavelets

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In the present paper, new classes of wavelet functions are presented in the framework of Clifford analysis. Firstly, some classes of orthogonal polynomials are provided based on 2-parameters weight functions. Such classes englobe the well known ones of Jacobi and Gegenbauer polynomials when relaxing one of the parameters. The discovered polynomial sets are next applied to introduce new wavelet functions. Reconstruction formula as well as Fourier-Plancherel rules have been proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. National Bureau of Standards, Applied Mathematics Series, USA (1964)

    MATH  Google Scholar 

  2. Antoine, J.-P., Murenzi, R., Vandergheynst, P.: Two-dimensional directional wavelets in image processing. Int. J. Imaging Syst. Technol. 7(3), 152–165 (1996)

    Article  Google Scholar 

  3. Askari Hemmata, A., Rahbani, Z.: Clifford wavelets and Clifford-valued MRAs. Iran. J. Math. Sci. Inf. 5(1), 7–18 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Publication, London (1982)

    MATH  Google Scholar 

  5. Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Gegenbauer polynomials and the associated continuous wavelet transform. Integral Transforms Special Funct. 15(5), 387–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brackx, F., De Schepper, N., Sommen, F.: The two-dimensional Clifford-Fourier transform. J. Math. Imaging 26, 5–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brackx, F., De Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)

    Article  MATH  Google Scholar 

  8. Brackx, F., De Schepper, N., Sommen, F.: Clifford -Jacobi polynomials and the associated continuous wavelet transform in Eucllidean space. In: Qian T., Vai, M.I., Xu, Y. (eds.) Wavelet Analysis and Applications. pp. 185–198 (2006)

  9. Brackx, F., De Schepper, N. , Sommen, F.: The Clifford–Laguerre Continuous Wavelet Transform, pp. 201–215 (2003)

  10. Craddock, M.J., Hogan, J.A.: The fractional Clifford-Fourier kernel, vol. 2411. The Erwin Schrodinger International Institute for Mathematical Physics ESI Vienna, Preprint ESI, p 27 (2013)

  11. De Schepper, N.: The generalized Clifford–Gegenbauer polynomials revisited. Adv. Appl. Clifford Algebras 19, 253–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delanghe, R.: Clifford analysis: history and perspectives. Comput. Methods Funct. Theory 1(1), 107–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitzer, E., Sangwine, S.J.: Quaternion and Clifford Fourier transforms and wavelets. In: Hitzer, E., Sangwine, S.J. (eds.) Trends in Mathematics. Birkhauser, Springer, Basel (2013)

    Google Scholar 

  14. Holschneider, M., Tchamitchan, Ph: Régularité locale de la fonction non-differentiable de Riemann. Lect. Notes. Math. 1438, 102–124 (1990)

    Article  Google Scholar 

  15. Jaffard, S.: Exposants de Hölder en des points donnés et coefficients d’ondelettes. C. R. Acad. Sci. Paris Sér. I Math. 308, 79–81 (1989)

  16. Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publ. Mat. 35, 155–168 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jefferies, B., Mcintosh, A.: The Weyl calculus and Clifford analysis. Bull. Australas. Math. Soc. 57, 329–341 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.A., Trujillo, J.I.: Theory and applications of fractional differential equations. In: van Mill, J. (ed.) North-Holland Mathematics Studies, vol. 204. Faculteit der Exacte Wetenschappen, Amsterdam (2006)

    Google Scholar 

  19. Kumar, D.: Prolate spheroidal wavelet coefficients, frames and double infinite matrices. Eur. J. Pure Appl. Math. 3(4), 717–724 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, D.: Convergence of prolate spheroidal wavelets in a generalized sobolev space and frames. Eur. J. Math. Sci. 2(1), 102–114 (2013)

    Google Scholar 

  21. Lahar, S.: Clifford Algebra: a visual introduction. Preprint. (2014). https://slehar.wordpress.com/2014/03/18/clifford-algebra-a-visual-introduction/. Accessed 18 Mar 2014

  22. Li, L.-W., Kang, X.-K., Leong, M.-S.: Spheroidal Wave Functions in Electromagnetic Theory. Wiley-Interscience Publication, USA (2002)

    Google Scholar 

  23. Malonek, H.R., Falcao, M.I.: On special functions in the context of Clifford analysis. AIP Conf. Proc. 1281, 1492–1495 (2010)

    Article  ADS  Google Scholar 

  24. McIntosh, A., Axelsson, A., Grognard, R., Hogan, J.: Harmonic analysis of Dirac operators on Lipschitz domains. Clifford Analysis and its Applications, pp. 231–246. Kluwer, Prague 2000 (2001)

  25. McIntosh, A., Jefferies, B., Picton-Warlow, J.: The monogenic functional calculus. Studia Math. 136(2), 99–119 (1999)

    MathSciNet  MATH  Google Scholar 

  26. McIntosh, A., Jefferies, B.: The Weyl calculus and Clifford analysis. Bull. Aust. Math. Soc. 57, 329–341 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Michel, V.: Lectures on Constructive Approximation. Applied and Numerical Harmonic Analysis, Birkhauser, Basel (2013)

  28. Mitrea, M.: Clifford Wavelets, Singular Integrals and Hardy Spaces. Springer, New York (1994)

  29. Morais, J., Kou, K.I., Sprö\(\beta \)ig, W.: Generalized holomorphic Szegö kernel in 3D spheroids. Comput. Math. Appl. 65(4), 576–588 (2013)

  30. Moussa, M.-M.: Calcul efficace et direct des représentations de maillages 3D utilisant les harmoniques sphériques, Thèse de Doctorat de l’université Claude Bernard, Lyon 1, France (2007)

  31. Ortigueira, M.D., Tenreiro, J.A.: Machado, fractional derivative. J. Comput. Phys. 293, 4–13 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Osipov, A., Rokhlin, V., Xiao, H.: Prolate spheroidal wave functions of order zero. In: Mathematical Tools for Bandlimited Approximation, Applied Mathematical Sciences, vol. 187. Springer, New York (2013)

  33. Pena, D.P.: Cauchy-Kowalevski Extensions, Fueters Theorems and Boundary Values of Special Systems in Clifford Analysis, A PhD thesis in Mathematics, Ghent University (2008)

  34. Saillard, J., Bunel, G.: Apport des fonctions sphéroidales pour l’estimation des paramètres d’une cible radar, p. 4. 12ème Colloque Gretsi-Juan-Les-Pins, 12–19 Juin (1989)

  35. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach Science Publisher, Amsterdam (1993)

    MATH  Google Scholar 

  36. Son, L.H.: Monogenic Functions with Parameters in Clifford Analysis. International Center for Theoretical Physics, 1990 Miramare, Trieste (1990)

  37. Stratton, J.A.: Spheroidal functions. Physics 21, 51–56 (1935)

    MATH  Google Scholar 

  38. Stratton, J.A., Morse, P.M., Chu, L.J., Little, J.D.C., Corbato, F.J.: Spheroidal Wave Functions. Wiley, New York (1956)

    MATH  Google Scholar 

  39. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis On Euclidien Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  40. Vieira, N.: Cauchy–Kovalevskaya extension theorem in fractional Clifford analysis. Complex Anal. Oper. Theory 9(5), 1089–1109 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler, J.: A uniqueness theorem for monogenic functions. Annales Academi Scientiarum Fennic Ser. A. I. Math. 18, 105–116 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrine Arfaoui.

Additional information

Communicated by Eckhard Hitzer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, S., Ben Mabrouk, A. Some Ultraspheroidal Monogenic Clifford Gegenbauer Jacobi Polynomials and Associated Wavelets. Adv. Appl. Clifford Algebras 27, 2287–2306 (2017). https://doi.org/10.1007/s00006-017-0788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0788-9

Keywords

Mathematics Subject Classification

Navigation