Skip to main content
Log in

An Approach by Representation of Algebras for Decoherence-Free Subspaces

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The aim of this paper is to present a general algebraic formulation for the decoherence-free subspaces (DFSs). In order to build the DFSs we consider the tensor product of Clifford algebras and left minimal ideals. States, error operators and projection operators are defined in a purely algebraic point of view. For this purpose, we initially generalize some results of Pauli and Artin about semisimple algebras. Then we derive orthogonality theorems for associative algebras analogous to theorems for finite groups. Some advantages and perspectives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baylis, W.E.: Quantum/classical interface: a geometric from the classical side. In: Byrnes, J. (ed.) Proceedings of the NATO Advanced Study Institute. Dordrecht Kluwer Academic, Dordrecht (2004)

  2. Bishop D.M.: Group Theory and Chemistry. Dover Publications, New York (1993)

    MATH  Google Scholar 

  3. Boerner H.: Representation of Groups. North-Holland Publish Company, Amsterdam (1963)

    MATH  Google Scholar 

  4. Bohm, D.; Hiley, B.: Relativistic phase space arising out of the Dirac algebra. In: A. Van der Merwc (ed.) Old and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology (Essays in Honor of Wolfang Yourgrau), pp. 67–76. Plenum Press, New York (1983)

  5. Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., Zeilinger A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Castagnino M., Fortin S.: Non-Hermitian Hamiltonians in decoherence and equilibrium theory. J. Phys. A Math. Theor. 45, 444009 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cotton F.A.: Chemical Applications of Group Theory. Willey-Interscience, New York (1971)

    Google Scholar 

  8. Da Rocha Jr., R., Vaz Jr., J.: Isotopic liftings of clifford algebras and applications in elementary particle mass matrices. Int. J. Theor. Phys. 46, 2464 (2007)

  9. Deutsch D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R Soc. Lond. A 400, 97 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dirac P.A.M.: Quantum electrodynamics without dead wood. Phys. Rev. 139, B684 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  11. Emch G.G.: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Dover Publications, New York (1972)

    MATH  Google Scholar 

  12. Fernandes, M.C.B.: Ph.D. Thesis, London University: Birkbeck College, Dept. Phys. (1995)

  13. Fernandes M.C.B., Vianna J.D.M.: On the generalized phase-space approach to Duffin–Kemmer–Petiau partciles. Found. Phys. 29, 201 (1999)

    Article  MathSciNet  Google Scholar 

  14. Frescura, F.A.M., Hiley, B.J.: Algebras, quantum theory and pre-space, Rev. Bras. Fis Vol. Especial Os 70 anos de Mario Schönberg 49 (1984)

  15. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hamermesh M.: Group Theory and its Applications of Physical Problems. Addison-Wesley, Massachusets (1962)

    MATH  Google Scholar 

  17. Havel, T.F., Doran, C.J.: Interaction and entangled in the multiparticle spacetime algebra. In: Dorst, L., Doran, C.J., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering. Birkhauser, Basel (2002).

  18. Hiley, B.: Algebraic Quantum Mechanics, Algebraic Spinors and Hilbert Space. In: Bowden, K.G. (ed.) Boundaries. Scientific Aspects of ANPA 24, pp. 149–186. ANPA, London (2003).

  19. Hiley, B.J.; Fernandes, M.C.B.: Process and Time, Temporality and Now (eds. H. Atmanspacher and E. Ruhnau), pp. 365–383. Springer, Berlin (1997)

  20. Hiley B.J., Monk N.A.M.: A unified algebraic approach to quantum theory. Found. Phys. Lett. 11, 371 (1998)

    Article  MathSciNet  Google Scholar 

  21. Holland P.R.: Tensor conditions for algebraic spinors. J. Phys. A Math. Gen. 16, 2363 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Josza R.: Quantum algorithms and the Fourier transform. Proc. R Soc. Lond. A 454, 323 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Knill E., Laflame R., Viola L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li W.: Clifford Algebra and Quantum Logic Gates. Adv. Appl. Clifford Alg. 14(2), 225–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lidar, D.A.; Brun, T.A. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013)

  26. Lidar D.A., Bacon D., Kempe J., Whaley K.B.: Decoherence-free subspaces for multiple-qubit errors. I. Characterization. Phys. Rev. A 63, 022306 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lidar D.A., Bacon D., Kempe J., Whaley K.B.: Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation. Phys. Rev. A 63, 022307 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lomont J.S.: Applications of Finite Groups. Academic Press, New York (1959)

    MATH  Google Scholar 

  29. Margetis D., Gnillakis M.: Impurity and quaternions in nonrelativistic scattering from a quantum memory. J. Phys. A Math. Theor. 41, 065307 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mosca, M.; Ekert, A.: The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer. [arXiv:quant-ph/9903071] (1999)

  31. Mosseri R., Dandoloff R.: Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Theor. 34, 10243 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Okubo S.: Representation of finite Clifford algebras. I. Classification. J. Math. Phys. 32, 7 (1991)

    MathSciNet  Google Scholar 

  34. Okubo S.: Representation of finite Clifford algebras. II. Explicit construction and pseudo-octonion. J. Math. Phys. 32, 7 (1991)

    MathSciNet  MATH  Google Scholar 

  35. Pauli, W.: Handbuch der Physik, vol. 24 Pt 2. Springer, Leipzig (1933)

  36. Pinto E., Trindade M.A.S., Vianna J.D.M.: Quasitriangular Hopf algebras, braid groups and quantum entanglement. Int. J. Quant. Inf. 11, 1350065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Regev, O.: Quantum Computation and Lattice Problems. [arXiv:cs/0304005] (2003)

  38. Santhanam T.S.: Clifford algebra, its generalizations, and applications to quantum information and computing. Adv. Appl. Clifford Alg. 20, 885–892 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schlosshauer M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  40. Schönberg, M.: On the Grassmann and Clifford algebras I. Anais Acad. Bras. Ciênc. 28(1), 11–19 (1956)

  41. Schönberg, M.: Quantum mechanics and geometry. Anais Acad. Bras. Ciênc. 29(4), 473–499 (1957)

  42. Schönberg, M.: Quantum mechanics and geometry (part II of a series of five). Anais Acad. Bras. Ciênc. 30(1), 1–20 (1958)

  43. Schönberg M.: Quantum kinematics and geometry. Suppl. Nuovo Cimento. 6, 356 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simon B.: Representation of Finite and Compact Groups. American Mathematical Society, Providence (1995)

    Book  Google Scholar 

  45. Somaroo S.S., Cory D.G., Havel T.F.: Expressing the operations of quantum computing in multiparticle geometric algebra. Phys. Lett. A. 240(1–2), 1–7 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Tinkhan M.: Group Theory and Quantum Mechanics. McGraw-Hill, New York (1964)

    Google Scholar 

  47. Vianna J.D.M., Fernandes M.C.B., Santana A.E.: Galilean-covariant clifford algebras in the phase-space representation. Found. Phys. 35, 109 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Vianna J.D.M., Trindade M.A.S., Fernandes M.C.B.: Algebraic criteria for entanglement in multipartite systems. Int. J. Theor. Phys. 47, 961 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vlasov A.Y.: Clifford algebras and universal sets of quantum gates. Phys. Rev. A. 63, 054302 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trindade, M.A.S., Pinto, E. & Vianna, J.D.M. An Approach by Representation of Algebras for Decoherence-Free Subspaces. Adv. Appl. Clifford Algebras 26, 771–792 (2016). https://doi.org/10.1007/s00006-015-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0623-0

Mathematics Subject Classification

Keywords

Navigation