Skip to main content
Log in

Algebraic Criteria for Entanglement in Multipartite Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum computing depends heavily on quantum entanglement. It has been known that geometric models for correlated two-state quantum systems (qubits) can be developed using geometric algebra. This suggests that entanglement may be given a purely algebraic description without resort to any particular representation on Hilbert spaces. In the case of the Clifford algebra, for example, the states are not simply operands in a Hilbert space representation of the algebra but they are considered as embedded within the Clifford algebra itself. In other words the space of states sits inside the algebra. This Clifford-algebraic substructure is a minimal left ideal of the algebra. This fact naturally poses the question of whether or not the description of entanglement in multipartite systems can be generalized to algebras possessing one-sided ideal structure. By making tensor products of algebras and their minimal one-sided ideals we propose an algebraic criteria for characterizing entanglement in multipartite systems without resort to any representation on Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baugh, J., Finkelstein, D.R., Galiautdinov, A., Saller, H.: J. Math. Phys. 42, 1489 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Baylis, W.E.: Quantum/classical interface: a geometric from the classical side. In: Byrnes, J. (ed.) Proceedings of the NATO Advanced Study Institute. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  3. Bennet, C.H., Brassard, G., Crépeau, C., Josza, R., Peres, A., Wootters, W.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennet, C.H., DiVicenzo, D.P.: Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  5. Cartan, E.: The Theory of Spinors. Dover, New York (1966)

    MATH  Google Scholar 

  6. Dirac, P.A.M.: Phys. Rev. B 139, 684 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dirac, P.A.M.: Lectures on Quantum Field Theory. Yeshiva University Belfer Graduate School of Science, New York (1966)

    Google Scholar 

  8. Ekert, A., Knight, P.L.: Am. J. Phys. 63, 415 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A., Jozsa, R.: Rev. Mod. Phys. 68, 733 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gühne, O.: Phys. Rev. Lett. 92, 117903 (2004)

    Article  ADS  Google Scholar 

  11. Frescura, F.A.M., Hiley, B.J.: Found. Phys. 10, 705 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hamermesh, M.: Group Theory and Its Application to Physical Problems. Addison-Wesley, London (1962)

    MATH  Google Scholar 

  13. Havel, T.F., Doran, C.J.: Geometric algebra in quantum information processing. In: Lomonaco, S. (ed.) Quantum Computation and Quantum Information Science, vol. 305, p. 81. American Mathematics Society, Providence (2001)

    Google Scholar 

  14. Havel, T.F., Doran, C.J.: Interaction and entangled in the multiparticle spacetime algebra. In: Dorst, L., Doran, C.J., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Basel (2002)

    Google Scholar 

  15. Holland, P.R.: J. Phys. A: Math. Gen. 16, 2363 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jauch, J.M.: Foundations of Quantum Mechanics. Addison–Wesley, London (1968)

    MATH  Google Scholar 

  17. Nielsen, M.A., Chuang, I.H.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Riesz, M.: In: Comptes Rendus 12 me Congrès Mathématique Scandinave, Lund, p. 241 (1953)

  19. Santana, A.E., Khanna, F.C., Revzen, M.: Phys. Rev. A 65, 032119 (2002)

    Article  ADS  Google Scholar 

  20. Santana, A.E., Neto, A.M., Vianna, J.D.M., Khanna, F.C.: Int. J. Theor. Phys. 8, 641 (1999)

    Article  MathSciNet  Google Scholar 

  21. Sauter, F.: Fortschr. Phys. 63, 803 (1930)

    Google Scholar 

  22. Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts (2001)

  23. Vianna, J.D.M., Fernandes, M.C.B., Santana, A.E.: Found. Phys. 35, 109 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Vlasov, A.Y.: Phys. Rev. A 63, 054302 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. B. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vianna, J.D.M., Trindade, M.A.S. & Fernandes, M.C.B. Algebraic Criteria for Entanglement in Multipartite Systems. Int J Theor Phys 47, 961–970 (2008). https://doi.org/10.1007/s10773-007-9522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9522-z

Keywords

Navigation