Skip to main content

Advertisement

Log in

The role of FcεRI expressed in dendritic cells and monocytes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Early studies regarding the function of FcεRI in dendritic cells (DCs) and monocytes have focused on its role in mediating inflammatory signaling and enhancing T cell immunity. It has been the case in part because FcεRI is the major receptor that mediates allergic inflammatory signaling in mast cells and basophils and because DCs and monocytes are antigen presenting cells capable of activating naïve and/or effector T cells. These studies have led to the general belief that FcεRI-mediated DC signaling and antigen presentation promote development and activation of Th2 cells and contribute to allergic inflammatory diseases. However, this belief has long suffered from a lack of evidence. Recently, studies have emerged that provide evidence supporting an opposing role: that FcεRI on DCs instead promotes immune homeostasis and regulation. In this review, we will update the current status of our understanding of FcεRI biology and function, with a specific focus on DCs and monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kraft S, Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7(5):365–378

    Article  CAS  PubMed  Google Scholar 

  2. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18(5):693–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    Article  CAS  PubMed  Google Scholar 

  4. Randolph GJ, Jakubzick C, Qu C (2008) Antigen presentation by monocytes and monocyte-derived cells. Curr Opin Immunol 20(1):52–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    Article  CAS  PubMed  Google Scholar 

  6. Palucka K, Banchereau J (2002) How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 14(4):420–431

    Article  CAS  PubMed  Google Scholar 

  7. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    Article  CAS  PubMed  Google Scholar 

  8. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963):291–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Geijtenbeek TB, van Vliet SJ, Engering A, Hart BA, van Kooyk Y (2004) Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22:33–54

    Article  CAS  PubMed  Google Scholar 

  10. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN (2014) The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14(2):94–108

    Article  CAS  PubMed  Google Scholar 

  11. Bieber T et al (1992) Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J Exp Med 175(5):1285–1290

    Article  CAS  PubMed  Google Scholar 

  12. Wang B et al (1992) Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J Exp Med 175(5):1353–1365

    Article  CAS  PubMed  Google Scholar 

  13. Tunon-De-Lara JM et al (1996) Dendritic cells in normal and asthmatic airways: expression of the alpha subunit of the high affinity immunoglobulin E receptor (Fc epsilon RI -alpha). Clin Exp Allergy 26(6):648–655

    Article  CAS  PubMed  Google Scholar 

  14. Allam JP et al (2003) Characterization of dendritic cells from human oral mucosa: a new Langerhans’ cell type with high constitutive FcepsilonRI expression. J Allergy Clin Immunol 112(1):141–148

    Article  CAS  PubMed  Google Scholar 

  15. Allam JP et al (2006) Comparative analysis of nasal and oral mucosa dendritic cells. Allergy 61(2):166–172

    Article  CAS  PubMed  Google Scholar 

  16. Bannert C et al (2012) Fc-epsilon-RI, the high affinity IgE-receptor, is robustly expressed in the upper gastrointestinal tract and modulated by mucosal inflammation. PLoS ONE 7(7):e42066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dzionek A et al (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165(11):6037–6046

    Article  CAS  PubMed  Google Scholar 

  18. Robbins SH et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Bachem A et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jongbloed SL et al (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Poulin LF et al (2010) Characterization of human DNGR-1+BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1261–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Crozat K et al (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA (2005) Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 32(3):177–184

    Article  CAS  PubMed  Google Scholar 

  24. Yu CI et al (2013) Human CD1c+ dendritic cells drive the differentiation of CD103+CD8+ mucosal effector T cells via the cytokine TGF-β. Immunity 38(4):818–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Klechevsky E et al (2008) Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29(3):497–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Foster B, Metcalfe DD, Prussin C (2003) Human dendritic cell 1 and dendritic cell 2 subsets express FcepsilonRI: correlation with serum IgE and allergic asthma. J Allergy Clin Immunol 112(6):1132–1138

    Article  CAS  PubMed  Google Scholar 

  27. Novak N et al (2004) Characterization of FcepsilonRI-bearing CD123 blood dendritic cell antigen-2 plasmacytoid dendritic cells in atopic dermatitis. J Allergy Clin Immunol 114(2):364–370

    Article  CAS  PubMed  Google Scholar 

  28. Greer A et al (2014) Accumulation of BDCA1+ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma. PLoS ONE 9(6):e99084

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Maurer D et al (1994) Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J Exp Med 179(2):745–750

    Article  CAS  PubMed  Google Scholar 

  30. Katoh N, Kraft S, Wessendorf JH, Bieber T (2000) The high-affinity IgE receptor (FcepsilonRI) blocks apoptosis in normal human monocytes. J Clin Invest 105(2):183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cheng YX et al (2006) CD2 identifies a monocyte subpopulation with immunoglobulin E-dependent, high-level expression of Fc epsilon RI. Clin Exp Allergy 36(11):1436–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Di Pucchio T et al (2003) CD2+/CD14+ monocytes rapidly differentiate into CD83+ dendritic cells. Eur J Immunol 33(2):358–367

    Article  PubMed  Google Scholar 

  33. Takamizawa M et al (1997) Dendritic cells that process and present nominal antigens to naive T lymphocytes are derived from CD2+ precursors. J Immunol 158(5):2134–2142

    CAS  PubMed  Google Scholar 

  34. Segura E et al (2013) Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38(2):336–348

    Article  CAS  PubMed  Google Scholar 

  35. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    Article  CAS  PubMed  Google Scholar 

  36. Novak N et al (2003) Evidence for a differential expression of the FcepsilonRIgamma chain in dendritic cells of atopic and nonatopic donors. J Clin Invest 111(7):1047–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Novak N et al (2002) A reducing microenvironment leads to the generation of FcepsilonRIhigh inflammatory dendritic epidermal cells (IDEC). J Invest Dermatol 119(4):842–849

    Article  CAS  PubMed  Google Scholar 

  38. Riedl E, Strobl H, Majdic O, Knapp W (1997) TGF-beta 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J Immunol 158(4):1591–1597

    CAS  PubMed  Google Scholar 

  39. Strobl H et al (1997) flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90(4):1425–1434

    CAS  PubMed  Google Scholar 

  40. Allam JP, Klein E, Bieber T, Novak N (2004) Transforming growth factor-beta1 regulates the expression of the high-affinity receptor for IgE on CD34 stem cell-derived CD1a dendritic cells in vitro. J Invest Dermatol 123(4):676–682

    Article  CAS  PubMed  Google Scholar 

  41. Maurer D et al (1995) The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation. J Immunol 154(12):6285–6290

    CAS  PubMed  Google Scholar 

  42. Hakimi J et al (1990) The alpha subunit of the human IgE receptor (FcERI) is sufficient for high affinity IgE binding. J Biol Chem 265(36):22079–22081

    CAS  PubMed  Google Scholar 

  43. Garman SC, Wurzburg BA, Tarchevskaya SS, Kinet JP, Jardetzky TS (2000) Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature 406(6793):259–266

    Article  CAS  PubMed  Google Scholar 

  44. Holdom MD et al (2011) Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcvarepsilonRI. Nat Struct Mol Biol 18(5):571–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Robertson MW (1993) Phage and Escherichia coli expression of the human high affinity immunoglobulin E receptor alpha-subunit ectodomain. Domain localization of the IgE-binding site. J Biol Chem 268(17):12736–12743

    CAS  PubMed  Google Scholar 

  46. Albrecht B, Woisetschlager M, Robertson MW (2000) Export of the high affinity IgE receptor from the endoplasmic reticulum depends on a glycosylation-mediated quality control mechanism. J Immunol 165(10):5686–5694

    Article  CAS  PubMed  Google Scholar 

  47. Letourneur O, Sechi S, Willette-Brown J, Robertson MW, Kinet JP (1995) Glycosylation of human truncated Fc epsilon RI alpha chain is necessary for efficient folding in the endoplasmic reticulum. J Biol Chem 270(14):8249–8256

    Article  CAS  PubMed  Google Scholar 

  48. Greer AM et al (2014) Serum IgE clearance is facilitated by human FcepsilonRI internalization. J Clin Invest 124(3):1187–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zeck A, Pohlentz G, Schlothauer T, Peter-Katalinic J, Regula JT (2011) Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa. J Proteome Res 10(7):3031–3039

    Article  CAS  PubMed  Google Scholar 

  50. Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492

    Article  CAS  PubMed  Google Scholar 

  51. Ra C, Jouvin MH, Blank U, Kinet JP (1989) A macrophage Fc gamma receptor and the mast cell receptor for IgE share an identical subunit. Nature 341(6244):752–754

    Article  CAS  PubMed  Google Scholar 

  52. Paolini R, Jouvin MH, Kinet JP (1991) Phosphorylation and dephosphorylation of the high-affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature 353(6347):855–858

    Article  CAS  PubMed  Google Scholar 

  53. Lin S, Cicala C, Scharenberg AM, Kinet JP (1996) The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 85(7):985–995

    Article  CAS  PubMed  Google Scholar 

  54. Donnadieu E, Jouvin MH, Kinet JP (2000) A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 12(5):515–523

    Article  CAS  PubMed  Google Scholar 

  55. Jurgens M, Wollenberg A, Hanau D, de la Salle H, Bieber T (1995) Activation of human epidermal Langerhans cells by engagement of the high affinity receptor for IgE, Fc epsilon RI. J Immunol 155(11):5184–5189

    CAS  PubMed  Google Scholar 

  56. Fiebiger E, Tortorella D, Jouvin MH, Kinet JP, Ploegh HL (2005) Cotranslational endoplasmic reticulum assembly of FcepsilonRI controls the formation of functional IgE-binding receptors. J Exp Med 201(2):267–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Letourneur F, Hennecke S, Demolliere C, Cosson P (1995) Steric masking of a dilysine endoplasmic reticulum retention motif during assembly of the human high affinity receptor for immunoglobulin E. J Cell Biol 129(4):971–978

    Article  CAS  PubMed  Google Scholar 

  58. Kraft S, Wessendorf JH, Hanau D, Bieber T (1998) Regulation of the high affinity receptor for IgE on human epidermal Langerhans cells. J Immunol 161(2):1000–1006

    CAS  PubMed  Google Scholar 

  59. Saini SS et al (2001) Expression and modulation of FcepsilonRIalpha and FcepsilonRIbeta in human blood basophils. J Allergy Clin Immunol 107(5):832–841

    Article  CAS  PubMed  Google Scholar 

  60. Rios EJ, Piliponsky AM, Ra C, Kalesnikoff J, Galli SJ (2008) Rabaptin-5 regulates receptor expression and functional activation in mast cells. Blood 112(10):4148–4157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Maurer D et al (1998) Fc epsilon receptor I on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J Immunol 161(6):2731–2739

    CAS  PubMed  Google Scholar 

  62. Molfetta R, Gasparrini F, Santoni A, Paolini R (2010) Ubiquitination and endocytosis of the high affinity receptor for IgE. Mol Immunol 47(15):2427–2434

    Article  CAS  PubMed  Google Scholar 

  63. Lantz CS et al (1997) IgE regulates mouse basophil Fc epsilon RI expression in vivo. J Immunol 158(6):2517–2521

    CAS  PubMed  Google Scholar 

  64. Yamaguchi M et al (1997) IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med 185(4):663–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Borkowski TA, Jouvin MH, Lin SY, Kinet JP (2001) Minimal requirements for IgE-mediated regulation of surface Fc epsilon RI. J Immunol 167(3):1290–1296

    Article  CAS  PubMed  Google Scholar 

  66. MacGlashan D Jr et al (1998) In vitro regulation of FcepsilonRIalpha expression on human basophils by IgE antibody. Blood 91(5):1633–1643

    CAS  PubMed  Google Scholar 

  67. MacGlashan D Jr, Xia HZ, Schwartz LB, Gong J (2001) IgE-regulated loss, not IgE-regulated synthesis, controls expression of FcepsilonRI in human basophils. J Leukoc Biol 70(2):207–218

    CAS  PubMed  Google Scholar 

  68. Vasudev M et al (2012) Expression of high-affinity IgE receptor on human peripheral blood dendritic cells in children. PLoS ONE 7(2):e32556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Turner H, Kinet JP (1999) Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402(6760 Suppl):B24–B30

    Article  CAS  PubMed  Google Scholar 

  70. Rivera J, Olivera A (2008) A current understanding of Fc epsilon RI-dependent mast cell activation. Current allergy and asthma reports 8(1):14–20

    Article  CAS  PubMed  Google Scholar 

  71. Alvarez-Errico D, Lessmann E, Rivera J (2009) Adapters in the organization of mast cell signaling. Immunol Rev 232(1):195–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kraft S, Novak N, Katoh N, Bieber T, Rupec RA (2002) Aggregation of the high-affinity IgE receptor Fc(epsilon)RI on human monocytes and dendritic cells induces NF-kappaB activation. J Invest Dermatol 118(5):830–837

    Article  CAS  PubMed  Google Scholar 

  73. Von Bubnoff D et al (2002) Kinetics of gene induction after FcepsilonRI ligation of atopic monocytes identified by suppression subtractive hybridization. J Immunol 169(11):6170–6177

    Article  Google Scholar 

  74. Le T et al (2009) Interferons modulate Fc epsilon RI-dependent production of autoregulatory IL-10 by circulating human monocytoid dendritic cells. J Allergy Clin Immunol 123(1):217–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pyle DM, Yang VS, Gruchalla RS, Farrar JD, Gill MA (2013) IgE cross-linking critically impairs human monocyte function by blocking phagocytosis. J Allergy Clin Immunol 131(2):491–500 (e491–495)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Schroeder JT, Chichester KL, Bieneman AP (2008) Toll-like receptor 9 suppression in plasmacytoid dendritic cells after IgE-dependent activation is mediated by autocrine TNF-alpha. J Allergy Clin Immunol 121(2):486–491

    Article  CAS  PubMed  Google Scholar 

  77. Khan SH, Grayson MH (2010) Cross-linking IgE augments human conventional dendritic cell production of CC chemokine ligand 28. J Allergy Clin Immunol 125(1):265–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Novak N et al (2004) FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol 113(5):949–957

    Article  CAS  PubMed  Google Scholar 

  79. Novak N, Bieber T, Katoh N (2001) Engagement of Fc epsilon RI on human monocytes induces the production of IL-10 and prevents their differentiation in dendritic cells. J Immunol 167(2):797–804

    Article  CAS  PubMed  Google Scholar 

  80. von Bubnoff D et al (2002) FcepsilonRI induces the tryptophan degradation pathway involved in regulating T cell responses. J Immunol 169(4):1810–1816

    Article  Google Scholar 

  81. Mellor AL, Munn DH (2011) Physiologic control of the functional status of Foxp3+ regulatory T cells. J Immunol 186(8):4535–4540

    Article  CAS  PubMed  Google Scholar 

  82. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774

    Article  CAS  PubMed  Google Scholar 

  83. Schroeder JT et al (2005) TLR9- and FcepsilonRI-mediated responses oppose one another in plasmacytoid dendritic cells by down-regulating receptor expression. J Immunol 175(9):5724–5731

    Article  CAS  PubMed  Google Scholar 

  84. Gill MA et al (2010) Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol 184(11):5999–6006

    Article  CAS  PubMed  Google Scholar 

  85. Platzer B et al (2014) Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunol. doi:10.1038/mi.2014.85

  86. Sharquie IK et al (2013) An investigation into IgE-facilitated allergen recognition and presentation by human dendritic cells. BMC immunology 14:54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Sallmann E et al (2011) High-affinity IgE receptors on dendritic cells exacerbate Th2-dependent inflammation. J Immunol 187(1):164–171

    Article  CAS  PubMed  Google Scholar 

  88. Baravalle G, Greer AM, LaFlam TN, Shin JS (2014) Antigen-conjugated human IgE induces antigen-specific T cell tolerance in a humanized mouse model. J Immunol 192(7):3280–3288

    Article  CAS  PubMed  Google Scholar 

  89. Dombrowicz D et al (1996) Anaphylaxis mediated through a humanized high affinity IgE receptor. J Immunol 157(4):1645–1651

    CAS  PubMed  Google Scholar 

  90. Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Jarrett E, Bazin H (1974) Elevation of total serum IgE in rats following helminth parasite infection. Nature 251(5476):613–614

    Article  CAS  PubMed  Google Scholar 

  92. Gleich GJ, Dunnette SL, Volenec FJ, Mani MM (1979) Quantification of serum IgE in patients with burns. Clinical allergy 9(2):133–139

    Article  CAS  PubMed  Google Scholar 

  93. Szczeklik A, Jawien J (1996) Immunoglobulin E in acute phase response to surgical stress. Clin Exp Allergy 26(3):303–307

    Article  CAS  PubMed  Google Scholar 

  94. McCoy KD et al (2006) Natural IgE production in the absence of MHC Class II cognate help. Immunity 24(3):329–339

    Article  CAS  PubMed  Google Scholar 

  95. Dreskin SC, Goldsmith PK, Strober W, Zech LA, Gallin JI (1987) Metabolism of immunoglobulin E in patients with markedly elevated serum immunoglobulin E levels. J Clin Invest 79(6):1764–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Iio A, Waldmann TA, Strober W (1978) Metabolic study of human IgE: evidence for an extravascular catabolic pathway. J Immunol 120(5):1696–1701

    CAS  PubMed  Google Scholar 

  97. Watanabe N, Owhashi M, Nawa Y (1986) Clearance of passively transferred IgE antibody from peripheral blood of mast cell-deficient W/Wv mice. Int Arch Allergy Appl Immunol 81(4):385–387

    Article  CAS  PubMed  Google Scholar 

  98. Dombrowicz D, Flamand V, Brigman KK, Koller BH, Kinet JP (1993) Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell 75(5):969–976

    Article  CAS  PubMed  Google Scholar 

  99. Novak N, Peng WM, Bieber T, Akdis C (2013) FcepsilonRI stimulation promotes the differentiation of histamine receptor 1-expressing inflammatory macrophages. Allergy 68(4):454–461

    Article  CAS  PubMed  Google Scholar 

  100. Wollenberg A, Kraft S, Hanau D, Bieber T (1996) Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Invest Dermatol 106(3):446–453

    Article  CAS  PubMed  Google Scholar 

  101. Woodruff PG et al (2009) T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 180(5):388–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Grayson MH et al (2007) Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J Exp Med 204(11):2759–2769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Hammad H et al (2010) Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207(10):2097–2111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Weigmann B et al (2012) Allergen-induced IgE-dependent gut inflammation in a human PBMC-engrafted murine model of allergy. J Allergy Clin Immunol 129(4):1126–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the UCSF Sandler Asthma Basic Research Center and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeoung-Sook Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, JS., Greer, A.M. The role of FcεRI expressed in dendritic cells and monocytes. Cell. Mol. Life Sci. 72, 2349–2360 (2015). https://doi.org/10.1007/s00018-015-1870-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1870-x

Keywords

Navigation