Skip to main content
Log in

Effect of grinding on thermal properties of wheat grain

  • Research Article
  • Published:
Journal of Consumer Protection and Food Safety Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the thermal conductivity, thermal resistivity, volumetric heat capacity and thermal diffusivity of whole and ground wheat grain. The bulk density of whole grain ranged from 0.758 to 0.828 g cm−1 (mean 0.806 g cm−1), gappiness ranged from 37.7 to 40.2% (mean 38.5%), length ranged from 5.99 to 7.23 mm (mean 6.54 mm) and width ranged from 3.32 to 3.89 mm (mean 3.53 mm). In whole grain, the thermal conductivity (0.125–0.174 W m−1 K−1), volumetric heat capacity (1.366–1.767 MJ m−3 K−1), thermal resistivity (6.058–7.893 m K W−1), and thermal diffusivity (0.091–0.101 mm2 s−1) differed significantly from the ground wheat grain (size of 0.2 mm) characterised by the thermal conductivity that ranged from 0.096 to 0.119 W m−1 K−1, volumetric heat capacity ranged from 0.992 to 1.179 MJ m−3 K−1, thermal resistivity ranged from 8.411 to 10.501 m K W−1, and thermal diffusivity 0.093 to 0.105 mm2 s−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Introduction to heat transfer, 7th edn. Wiley, Hoboken, p 1050

    Google Scholar 

  • Božiková M (2003) Thermophysical parameters of corn and wheat flour. Res Agric Eng 49(4):157–160

    Article  Google Scholar 

  • Božiková M, Hlaváč P, Vozárová V, Beláň Ľ (2015) Experimental determination of soft wheat flour thermal parameters. Acta Technol Agric 18:6–9

    Google Scholar 

  • Cagran C (2000) Thermal conductivity and thermal diffusivity of liquid copper (Diploma thesis). Institut für Experimentalphysik, Technische, Universitat Graz, Graz

    Google Scholar 

  • Cao Y, Li G, Zhang Z, Chen L, Li Y, Zhang T (2010) The specific heat of wheat. Julius-Kühn-Arch 425:243–249

    Google Scholar 

  • Casanova P, Corrêa PC, Solís K, Campos JCC (2013) Thermal properties of Conilon coffee fruits. IOSR J Eng 3:29–35

    Google Scholar 

  • Chang CS (1986) Thermal conductivity of wheat, corn, and grain sorghum as affected by bulk density and moisture content. Trans ASAE 29:1447–1450

    Article  Google Scholar 

  • Dal-Pastro F, Facco P, Bezzo F, Zamprogna E, Barolo M (2016) Data-driven modeling of milling and sieving operations in a wheat milling process. Food Bioprod Process 99:99–108

    Article  Google Scholar 

  • Ikegwu OJ, Ezeh CQ (2012) Thermal properties of Kerstingiella geocarpa seeds as influenced by moisture content. Niger Food J 30(2):100–105

    Article  Google Scholar 

  • Jangi AN, Mortazavi SA, Tavakoli M, Ghanbari A, Tavakolipour H, Haghayegh GH (2011) Comparison of mechanical and thermal properties between two varieties of barley (Hordeum vulgare L.) grain. Aust J Agric Eng 2(5):132–139

    Google Scholar 

  • Jibril AN, Yadav KC, Binni MI, Kabir MH (2016) Study on effect of moisture content on thermal properties of bambara groundnut (Vignasubterranea L. Verdc.) seed. Int Res J Eng Technol 3:773–782

    Google Scholar 

  • Konvalina P, Capouchová I, Stehno Z, Moudrý Jr J (2012) Genetic resources of emmer wheat and their prospective use in organic farming. Luc Ştiin Agron 55(2):13–18

    Google Scholar 

  • Kumar P, Yadava RK, Gollen B, Kumar S, Verma RK, Yadav S (2011) Nutritional contents and medicinal properties of wheat: a review. Life Sci Med Res 22:1–10

    Google Scholar 

  • Mahapatra AK, Melton ShL, Isang EM (2013) Effect of moisture content on thermal properties of cowpea flours. Agric Eng Int CIGR J 15(2):251–255

    Google Scholar 

  • Ngozi AA (2014) Effect of whole wheat flour on the quality of wheat-baked bread. Global J Food Sci Technol 2(3):127–133

    Google Scholar 

  • Perussello CA, Mariani VC, Amarante ÁCC (2014) Thermophysical properties of okara during drying. Int J Food Prop 17(4):891–907

    Article  Google Scholar 

  • Ropelewska E (2018) Relationship of thermal properties and ergosterol content of barley grains. J Cereal Sci 79:328–334

    Article  CAS  Google Scholar 

  • Ropelewska E, Zapotoczny P, Budzyński WS, Jankowski KJ (2017) Discriminating power of selected physical properties of seeds of various rapeseed (Brassica napus L.) cultivars. J Cereal Sci 73:62–67

    Article  Google Scholar 

  • Ropelewska E, Jankowski KJ, Zapotoczny P, Bogucka B (2018) Thermophysical and chemical properties of seeds of traditional and double low cultivars of white mustard. Zemdirb Agric 105(3):257–264

    Article  Google Scholar 

  • Sahin S, Sumnu SG (2006) Thermal properties of foods. In: Sahin S, Sumnu SG (eds) Physical properties of foods. Springer, New York, pp 107–155

    Chapter  Google Scholar 

  • Sangamithra A, Swamy GJ, Prema SR, Nandini K, Kannan K, Sasikala S, Suganya P (2016) Moisture dependent physical properties of maize kernels. Int Food Res J 23(1):109–115

    CAS  Google Scholar 

  • Schutyser MAI (2003) Mixed solid-state fermentation: numerical modeling and experimental validation. PhD thesis, Wageningen University, The Netherlands

  • Singh VK, Devi A, Pathania S, Kumar V, Tripathi DK, Sharma Sh, Chauhan DK, Singh VK, Zorba V (2017) Spectroscopic investigation of wheat grains (Triticum aestivum) infected by wheat seed gall nematodes (Anguina tritici). Biocatal Agric Biotechnol 9:58–66

    Article  Google Scholar 

  • Sirisomboon P, Posom J (2012) Thermal properties of Jatropha curcas L. kernels. Biosyst Eng 113:402–409

    Article  Google Scholar 

  • Slavin J (2004) Whole grains and human health. Nutr Res Rev 17(1):99–110

    Article  PubMed  Google Scholar 

  • Šramková Z, Gregová E, Šturdík E (2009) Chemical composition and nutritional quality of wheat grain. Acta Chim Slovaca 2:115–138

    Google Scholar 

  • Subramanian Sh, Viswanathan R (2003) Thermal properties of minor millet grains and flours. Biosyst Eng 84(3):289–296

    Article  Google Scholar 

  • Suleiman R, Xie K, Rosentrater K (2015) Physical and thermal properties of chia, kańiwa, triticale and farro as a function of moisture content. In: ASABE annual international meeting, New Orleans, 26–29 July 2015, pp 1–38

  • Szczypiński PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda—a software package for image texture analysis. Comput Methods Progr Biomed 94(1):66–76

    Article  Google Scholar 

  • Tabatabaeefar A (2003) Moisture-dependent physical properties of wheat. Int Agrophys 17:207–211

    Google Scholar 

  • Tavakoli M, Tavakoli H, Rajabipour A, Ahmadi H, Gharib-Zahedi SMT (2009) Moisture-dependent physical properties of barley grains. Int J Agric Biol Eng 2(4):84–91

    Google Scholar 

  • Voicu G, Constantin GA, Stefan EM, Voicu P (2013) Particle size distribution of wheat grist fractions in plansifter compartments of a five breaks roller mill system. J Eng Stud Res 19:102–110

    Google Scholar 

  • Wilhelm LR, Suter DA, Brusewitz GH (2004) Physical properties of food materials. Chapter 2. Food and process engineering technology ASAE 23–53

    Google Scholar 

  • Yu L, Nanguet AL, Beta T (2013) Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants 2:370–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao HM, Guo XN, Zhu KX (2017) Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem 217:28–36

    Article  CAS  PubMed  Google Scholar 

  • Zielinska M, Ropelewska E, Markowski M (2017) Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT Food Sci Technol 85:204–211

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Science Centre in Poland (Grant number 2015/17/B/NZ9/03601), the National Centre for Research and Development in Poland (Grant number PBS3/A8/38/2015), the University of Warmia and Mazury in Olsztyn, Poland (Grant number 16.610.001-300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Ropelewska.

Ethics declarations

Conflict of interest

The author declare that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ropelewska, E. Effect of grinding on thermal properties of wheat grain. J Consum Prot Food Saf 14, 139–146 (2019). https://doi.org/10.1007/s00003-018-1200-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00003-018-1200-y

Keywords

Navigation