Skip to main content
Log in

Preparation and Characterisation of Natural Rubber Composites Comprising Hybrid Fillers of Activated Carbon / in situ Synthesised Magnetite

  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the influence of hybrid fillers based on activated carbon/nanoscale magnetite synthesised in situ on the curing, mechanical and dynamic characteristics, electrical and thermal conductivities, dielectric characteristics and homogeneity of natural rubber based composites. The fillers have been characterised by X-ray diffraction and X-ray photoelectron spectroscopy establishing the influence of the magnetite layer on the texture characteristics. It has been found that magnetite amount changes the texture characteristics of activated carbon. The increasing amount of deposited magnetite hinders the vulcanisation process and loosens the vulcanisation network. The elongation at break and residual elongation increase, while Shore A hardness and the modulus 100 decrease. The storage modulus decreases, while the mechanical loss angle tangent increases together with the dielectric constant and the dielectric loss angle tangent also get higher. The thermal conductivity coefficient and homogeneity increase at higher magnetite amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GHASEMI, A., LIU, X. AND MORISAKO, A. (2007) Magnetic and Microwave Absorption Properties of BaFe12–x, (Mn0.5Cu0.5Zr)x/2O19 synthesized by sol-gel processing. J. Magn. Magn. Mater., 316(2), e105–e108.

    Article  CAS  Google Scholar 

  2. YUSOFF, A. N., ABDULLAH, M. H., AHMAD, S. H., JUSOH, S. F., MANSOR, A. A. AND HAMID, S. A. A. (2002) Electromagnetic and Absorption Properties of Some Microwave Absorbers. J. Appl. Phys, 92(2), 876–882.

    Article  CAS  Google Scholar 

  3. MOTTAHED, B. D. AND MANOOCHEHRI, S. (1995) A Review of Research in Materials, Modeling and Simulation, Design Factors, Testing, and Measurements Related to Electromagnetic Interference Shielding. Polym. Plast. Technol. Eng., 34(2), 271–346.

    Article  CAS  Google Scholar 

  4. LAKSHMI, K., JOHN, H., MATHEW, K. T., JOSEPH, R. AND GEORGE, K. E. (2009) Microwave Absorption, Reflection and Emi Shielding of PU-PANI Composite. Acta Mater., 57(2), 371–375.

    Article  CAS  Google Scholar 

  5. KAYNAK, A., POLAT, A. ANDYILMAZER, U. (1996) Some Microwave and Mechanical Properties of Carbon Fiber — Polypropylene and Carbon Black — Polypropylene Composites. Mater. Res. Bull., 31(10), 1195–1206.

    Article  CAS  Google Scholar 

  6. LU, G., LI, X. AND JIANG, H. (1996) Electrical and Shielding Properties of ABS Resin Filled with Nickel — Coated Carbon Fibers. Compos. Sci. Technol., 56(2), 193–200.

    Article  CAS  Google Scholar 

  7. RAHAMAN, M., CHAKI, T. K. AND KHASTGIR, D. (2011) Development of High Performance EMI Shielding Material from EVA, NBR, and their Blends: Effect of Carbon Black Structure. J. Mater. Sci., 46(11), 3989–3999.

    Article  CAS  Google Scholar 

  8. CHUNG, D. D. L. (2001) Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon, 39(2), 279–285.

    Article  CAS  Google Scholar 

  9. CHIANG, W.-Y. AND CHENG, K.-Y. (1997) Processing Conditions for Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Acrylonitrile — Butadiene — Styrene based Composites. Polym. Compos., 18(6), 748–756.

    Article  CAS  Google Scholar 

  10. BARBA, A. A., LAMBERTI, G., D’AMORE, M. AND ACIERNO, D. (2006) Carbon black/Silicone Rubber Blends as Absorbing Materials to Reduce Electro Magnetic Interferences (EMI). Polym. Bull., 57(4), 587–593.

    Article  CAS  Google Scholar 

  11. KRISHNAN, Y., CHANDRAN, S., USMAN, N., SMITHA, T. R., PARAMESWARAN, P. S. AND PREMA, K. H. (2015) Processability, Mechanical and Magnetic Studies on Natural Rubber — Ferrite Composites. Int. J. Chem. Stud, 3(1), 15–22.

    Google Scholar 

  12. ISMAIL, H., SAM, S. T., MOHD NOOR, A. F. AND BAKAR, A. A. (2007) Properties of Ferrite — filled Natural Rubber Composites. Polym. Plast. Technol. Eng., 46(6), 641–650.

    Article  CAS  Google Scholar 

  13. KONG, I., HJ AHMAD, S., HJ ABDULLAH, M., HUI, D., NAZLIM YUSOFF, A. AND PURYANTI, D. (2010) Magnetic and Microwave Absorbing Properties of Magnetite-thermoplastic Natural Rubber Nanocomposites. J. Magn. Magn. Mater., 322(21), 3401–3409.

    Article  CAS  Google Scholar 

  14. UROGIOVA, E., HUDEC, I. AND BELLUSOVA, D. (2006) Magnetic and Mechanical Properties of Strontium Ferrite — rubber Composites. Kautsch. Gummi Kunstst. 5(0), 224–228.

    Google Scholar 

  15. SHTARKOVA, R. AND DISHOVSKY, N. (2009) Elastomer — Based Microwave Absorbing Materials. J. Elastom. Plast., 41(2), 163–174.

    Article  CAS  Google Scholar 

  16. DISHOVSKY, N. AND GRIGOROVA, M. (2000) On the Correlation between Electromagnetic Waves Absorption and Electrical Conductivity of Carbon Black Filled Polyethylenes. Mater. Res. Bull., 35(3), 403–409.

    Article  CAS  Google Scholar 

  17. ZHANG, C.-S., NI, Q.-Q., FU, S.-Y. AND KURASHIKI, K. (2007) Electromagnetic Interference Shielding Effect of Nanocomposites with Carbon Nanotube and Shape Memory Polymer. Compos. Sci. Technol., 67(14), 2973–2980.

    Article  CAS  Google Scholar 

  18. ATTHARANGSAN, S., ISMAIL, H., BAKAR, M. A. AND ISMAIL, J. (2012) Carbon Black (CB)/Rice Husk Powder (rhp) Hybrid Filler — filled Natural Rubber Composites: Effect of CB/RHP Ratio on Property of the Composites. Polym. Plast. Technol. Eng., 51(7), 655–662.

    Article  CAS  Google Scholar 

  19. LING, Q., SUN, J., ZHAO, Q. AND ZHOU, Q. (2011) Effects of Carbon Black Content on Microwave Absorbing and Mechanical Properties of Linear Low Density Polyethylene/Ethylene — octene Copolymer/ Calcium Carbonate Composites. Polym. Plast. Technol. Eng., 50(1), 89–94.

    Article  CAS  Google Scholar 

  20. DAS, T. K. AND PRUSTY, S. (2012) Review on Conducting Polymers and Their Applications. Polym. Plast. Technol. Eng., 51(14), 1487–1500.

    Article  CAS  Google Scholar 

  21. CHANDRAN, A. S., NARAYANANKUTTY, S. K. AND MOHANAN, P. (2011) Microwave Characteristics of Polyaniline Based Short Fiber Reinforced Chloroprene Rubber Composites. Polym. Plast. Technol. Eng., 50(5), 453–458.

    Article  Google Scholar 

  22. DISHOVSKY, N. (2009) Rubber Based Composites with Active Behaviour to Microwaves (review). J. Univ. Chem. Technol. Metallurgy., 44(2), 115–122.

    CAS  Google Scholar 

  23. RADOVIC, L. R. AND RODRIGUES-REINOSO, F. (1996) Chemistry and Physics of Carbon. New York: Marcel Dekker, 254.

    Google Scholar 

  24. RODRÍGUEZ-REINOSO, F. (1998) The Role of Carbon Materials in Heterogeneous Catalysis. Carbon, 36(3), 159–175.

    Article  Google Scholar 

  25. DONNET, J.-B. AND CUSTODERO, E. (2013) in: The Science and Technology of Rubber (4th Edition) (eds) MARK, J. E., ERMAN, B. and ROLAND, C. M., Boston: Academic Press, 383–416.

    Chapter  Google Scholar 

  26. DICK, J. S. (2001) Rubber Technology: Compounding and Testing for Performance, Munich: Hanser Publishers.

    Google Scholar 

  27. AL-SEHEMI, A. G., AL-GHAMDI, A. A., DISHOVSKY, N., NICKOLOV, R. N., ATANASOV, N. T. AND MANOILOVA, L. T. (2017) Effect of Activated Carbons on the Dielectric and Microwave Properties of Natural Rubber Based Composites. Mat. Res., 20(0), 1211–1220.

    Article  Google Scholar 

  28. AL-GHAMDI AHMED, A., AL-HARTOMY OMAR, A., AL-SOLAMY, F., DISHOVSKY, N., MALINOVA, P. AND SHTARKOVA, R. (2016) Microwave Properties of Natural Rubber Based Composites Containing Carbon Black — Magnetite Hybrid Fillers. Sci. Eng. Comp. Mat., in press.

    Google Scholar 

  29. MUNIRAH, N. R., NORIMAN, N. Z., SALIHIN, M. Z., KAMARUDDIN, H., FATIN, M. H., SAM, S. T., MUSTAFA AL BAKRI, A. M. AND ROSNIZA, H. (2016) The Effects on Cure Characteristics, Physico — mechanical Properties and Morphology of Bamboo Activated Carbon Filled Styrene Butadiene Rubber (SBR) Vulcanisates. Key Eng. Mater., 673(0), 131–140.

    Article  Google Scholar 

  30. YUVARAJ, P., RAO, J. R., FATHIMA, N. N., NATCHIMUTHU, N. AND MOHAN, R. (2018) Complete Replacement of Carbon Black Filler in Rubber Sole with CaO Embedded Activated Carbon Derived from Tannery Solid Waste. Journal of Cleaner Production. 170(Supplement C), 446–450.

    Article  CAS  Google Scholar 

  31. AL-GHAMDI, A. A., AL-HARTOMY, O. A., AL-SOLAMY, F. R., DISHOVSKY, N., NICKOLOV, R., ATANASOV, N. AND RUSKOVA, K. (2017) Effect of Activated Carbon/In Situ Synthesized Magnetite Hybrid Fillers on the Microwave Properties of Natural Rubber Composites. Adv. Mat. Proc, 2(10), 621–628.

    Article  Google Scholar 

  32. KARYAKIN, Y. V. AND ANGELOV, I. I. (1974) Pure Chemical Substances (in Russian), Moscow: Chemistry.

    Google Scholar 

  33. DUBININ, M. M. AND ASTAKHOV, V. A. (1971) Description of Adsorption Equilibria of Vapors on Zeolites Over Wide Ranges of Temperature and Pressure. Adv. Chem. Series., 102(0), 69–85.

    Article  CAS  Google Scholar 

  34. SING, K. S. W. (1969) in: Surface Area Determination (eds) EVERETT, D. H. and OTTEWILL, R. H. London: Butterwoths, 25.

  35. NOH, J. S. AND SCHWARZ, J. A. (1990) Effect of HNO3 Treatment on the Surface Acidity of Activated Carbons. Carbon., 28(5), 675–682.

    Article  CAS  Google Scholar 

  36. NEPHEDOV, V. I. (1984) Handbook of X — Ray Photoelectron Spectroscopy of Chemical Compounds (in Russian), Moscow: Chemistry.

    Google Scholar 

  37. ROSSIN, J. A. (1989) XPS Surface Studies of Activated Carbon. Carbon, 27(4), 611–613.

    Article  CAS  Google Scholar 

  38. CORAN, A. Y. (2013) in: The Science and Technology of Rubber (4th edition) (eds) MARK, E., ERMAN, B. and ROLAND, M. Boston: Academic Press, 337–381.

    Chapter  Google Scholar 

  39. KRUŽELÁK, J., UŠAKOVÁ, M., DOSOUDIL, R., HUDEC, I. AND SÝHORA, R. (2014) Microstructure and Performance of Natural Rubber Based Magnetic Composites. Polym. Plast. Technol. Eng., 53(11), 1095–1104.

    Article  Google Scholar 

  40. AL-GHAMDI, A. A., AL-HARTOMY, O. A., AL-SOLAMY, F., DISHOVSKY, N., ZAIMOVA, D., MALINOVA, P. AND NIHTIANOVA, D. (2016) Preparation and Characterisation of Natural Rubber Composites Comprising Conductive Carbon Black/Magnetite Hybrid Fillers Obtained by Impregnation Technology. Polym. Plast. Technol. Eng., in press.

    Google Scholar 

  41. ANSAR, M. Z., ATIQ, S., ALAMGIR, K. AND NADEEM, S. (2014) Frequency and Temperature Dependent Dielectric Response of Fe3O4 Nano — crysatallites. J. Sci. Res., 6(6), 399–406.

    Article  Google Scholar 

  42. CULLITY, B. D. (1972) Introduction to Magnetic Materials, New York: Addison — Wesley.

    Google Scholar 

  43. MAXWELL, J. C. (2010) A Treatise on Electricity and Magnetism, New York: Cambridge University Press.

    Book  Google Scholar 

  44. WAGNER, K. W. (1913) Zur Theorie der unvollkommenen Dielektrika. Ann. Phys., 345(5), 817–855.

    Article  Google Scholar 

  45. RAHMAN, M. M., HALDER, P. K., AHMED, F., HOSSAIN, T. AND RAHAMAN, M. (2012) Effect of Ca — Substitution on the Magnetic and Dielectric Properties of Mn — Zn Ferrites. J. Sci. Res., 4(2), 297–306.

    Article  CAS  Google Scholar 

  46. MU, G., CHEN, N., PAN, X., SHEN, H. AND GU, M. (2008) Preparation and Microwave Absorption Properties of Barium Ferrite Nanorods. Mater. Lett., 62(6), 840–842.

    Article  CAS  Google Scholar 

  47. KĀZĀ, I., SHIGEHISA, Y., YOSHICHIKA,, TETSUYA, H., NAOKAZU, K., TOSHIO, T. AND SYĀJI, F. (1971) Dielectric Properties of the Mixtures of α — Fe2O3, TiO2 and Fe2TiO5. Jpn. J. Appl. Phys., 10(11), 1513.

    Article  Google Scholar 

  48. MAHARRAMOV, A. M., RAMAZANOV, M. A., ALIZADE, R. A. AND ASILBEYLI, P. B. (2013) Structure and Dielectric Properties of nanocomposites on the basis of polyethylene with Fe3O4 nanoparticles. Dig. J. Nanomater. Bias, 8(4), 1447–1454.

    Google Scholar 

  49. KUWAGAKI, H., MEGURO, T., TATAMI, J., KOMEYA, K. AND TAMURA, K. (2003) An Improvement of Thermal Conduction of Activated Carbon by Adding Graphite. J. Mater. Sci., 38(15), 3279–3284.

    Article  CAS  Google Scholar 

  50. NODA, Y. AND NAITO, K. (1978) The Thermal Conductivity and Diffusivity of MnxFe3 + xO4 from 200 to 700K. Netsu Sokutei. 5(1), 11–18.

    CAS  Google Scholar 

  51. LU, W. AND CHUNG, D. D. L. (2001) Preparation of Conductive Carbons with High Surface Area. Carbon, 39(1), 39–44.

    Article  CAS  Google Scholar 

  52. BLANEY, L. (2007) Magnetite (Fe3O4): Properties, Synthesis, and Applications. Lehigh University. 15, Paper 5: https://doi.org/www.preserve.lehigh.edu.

    Google Scholar 

  53. BOTROS, S. H., MOUSTAFA, A. F. AND IBRAHIM, S. A. (2006) Homogeneous Styrene Butadiene/Acrylonitrile Butadiene Rubber Blends. Polym. Plast. Technol. Eng., 45(4), 503–512.

    Article  CAS  Google Scholar 

  54. BOTROS, S. H. AND TAWFIK, S. Y. (2006) Improvement of Homogeneity of SBR/CR Rubber Blends with SBR -g — AA Grafted Rubber. Polym. Plast. Technol. Eng, 45(7), 829–837.

    Article  CAS  Google Scholar 

  55. O’FARREELL, C. P., GERSPACHER, M. AND NIKEL, L. (2000) Carbon black Dispersion by Electrical Measurements. Kautsch. Gummi Kunstst., 12(0), 701–710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dishovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ghamdi, A.A., Al-Hartomy, O.A., Al-Solamy, F.R. et al. Preparation and Characterisation of Natural Rubber Composites Comprising Hybrid Fillers of Activated Carbon / in situ Synthesised Magnetite. J Rubber Res 21, 94–118 (2018). https://doi.org/10.1007/BF03449164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03449164

Keywords

Navigation