Skip to main content

Advertisement

Log in

Extremwetterlagen und Auswirkungen auf Schaderreger – extreme Wissenslücken

Weizen, Gerste, Mais, Raps, Kartoffel, Zuckerrübe, Ackerfutterpflanzen und Grünland

Extreme Weather and influences on Plant Pests: Extreme Knowledge Gap

Wheat, barley, maize, rape, potato, beet, field forage crops and grassland

  • Übersichtsbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Zusammenfassung

Der Klimawandel wird voraussichtlich zu einer Zunahme der Häufigkeit, Intensität, räumlichen Verteilung, Dauer und Timing von Extremwetterereignissen sowie dem Auftreten neuartiger Extrema führen. Die Landwirtschaft ist nicht immun. Studien der ständig wachsenden Literatur über den Klimawandel lassen erkennen, dass es vergleichsweise wenig Arbeiten zum Einfluss von Extremwetter auf die Landwirtschaft gibt. Es ist nicht möglich, belastbare Vorhersagen zu den zukünftigen Auswirkungen von Extremwetterereignissen zu machen. Schaderreger (Unkräuter, Schadinsekten und Pflanzenkrankheiten) stellen einen limitierenden Faktor der Pflanzenproduktion dar. Daher wurde in der vorliegenden Arbeit in der seit 1945 erschienenen wissenschaftlichen Literatur recherchiert, was über den Einfluss von Wetterextrema auf das Auftreten der Schaderreger an Weizen, Gerste, Mais, Zuckerrüben, Kartoffeln, Raps, Ackerfutterpflanzen und Grünland sowie durch sie verursachte Ertragsverluste bekannt ist. Nur 63 relevante Arbeiten konnten gefunden werden. Am meisten untersucht sind Schadinsekten und Schadpilze an Weizen und Mais. Untersucht wurde hauptsächlich der Einfluss von Dürre, Trockenheit, Hitze und Starkregen. Es gibt enorme Wissenslücken. Auf dieser Grundlage ist es gegenwärtig nicht möglich, den Einfluss von Extremwetterereignissen auf das Schaderregerauftreten und mögliche Ertragsverluste abzuschätzen und zu bewerten. Forschungen hierzu sind dringend notwendig.

Abstract

Climate Change is likely to increase the frequency, intensity, spatial extent, duration and timing of weather and climate extremes and can result in unprecedented extremes. Managed systems like agriculture are not immune to them. Studying the rapidly growing body of climate change literature it has been noted that there are only a few papers concerning the influences of extreme weather on agriculture. Projections of future impacts of extreme weather cannot always be made with a high level of confidence. Pests (weeds, insect pests and plant pathogens) represent a major constraint to crop production. The present paper analyses scientific literature published since 1945 concerning the knowledge about the influences of extreme weather on incidence of pests in wheat, barley, maize, beet, potato, rape, forage crops and grassland. Only 63 papers were found. Insect pests and plant pathogenic fungi of maize and wheat are most investigated. The most papers describe the influences of drought, dryness heat and heavy down pours. There are enormously knowledge gaps. On the basis of this it is not possible to assess the influences of weather extremes in a changing climate on pests and yield loss current. More research in this field is needed urgently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  • Abbas HK, Williams WP, Windham GL, Pringle HC, Xie WP, Shier WT (2002) Aflatoxin and fumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. J Agricul Food Chem 50:5246–5254

    Article  CAS  Google Scholar 

  • Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelledclimate extremes over Australia in relation to future projections. InternationalJ Climat 29:417–435

    Article  Google Scholar 

  • Andrews CJ, Paliwal YC (1986) Effects of barley yellow dwarf virus infection and low temperature flooding on cold stress tolerance of winter cereals. Canad J Plant Path 8:311–316

    Article  CAS  Google Scholar 

  • Araya JE (1991) Cereal aphid survival under flooding conditions. Z Pflkrankh Pflsch 98:168–173

    Google Scholar 

  • Aslam TJ, Johnson SN, Karley AJ (2013) Plant-mediated effects of drought on aphid population structure and parasitoid attack. J Appl Entom 137:136–145

    Article  Google Scholar 

  • Barton BT, Beckerman AP, Schmitz OJ (2009) Climate warming strengthens indirect interactions in an old-field food web. Ecol 90:2346–2351

    Article  Google Scholar 

  • Beddis AL, Burgess LW (1992) The influence of plant water-stress on infection and colonization of wheat seedlings by Fusarium-graminearum Group-1. Phytopath 82:78–83

    Article  Google Scholar 

  • Bethenod O, Huber L, Slimi H (2001) Photosynthetic response of wheat to stress induced by Puccinia recondita and post-infection drought. Photosynth 39:581–590

    Article  Google Scholar 

  • Betran FJ, Isakeit T (2004) Aflatoxin accumulation in maize hybrids of different maturities. Agronom J 96:565–570

    Article  CAS  Google Scholar 

  • Beyer M, Verreet JA (2005) Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. European J Plant Path 111:381–389

    Article  Google Scholar 

  • Beyer M, Roding S, Ludewig A, Verreet JA (2004) Germination and survival of Fusarium graminearum macroconidia as affected by environmental factors. J Phytopath 152:92–97

    Article  Google Scholar 

  • Bruns HA (2003) Controlling aflatoxin and fumonisin in maize by crop management. J ToxicolToxin Rev 22:153–173

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gau X, Held I, Jones R, Kolli R, Kwon W, Laprise R, Magaña Rueda V, Mearns L, Menéndez C, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Hrsg) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on climate change. Cambridge University, Cambridge, pp 847–940

    Google Scholar 

  • Cuperus G, Johnston R, Tucker B, Coppock S, Williams E, Stiegler J, Bloome P, Greer H, Pitts J, Fain D (1985) Wheat production and management in Oklahoma. Oklahomasssssss State University, Division of Agriculture, Cooperative Extension Service Circular E–831

  • Debaeke P, Aussenac T, Fabre JL, Hilaire A, Pujol B, Thuries L (1996) Grain nitrogen content of winter wheat (Triticum aestivum L.) as related to crop management and to the previous crop. Europ J Agro 5:273–286

    Article  CAS  Google Scholar 

  • Defarias A, Hopper KR, Leclant F (1995) Damage symptoms and abundance of Diuraphis noxia (Homoptera, Aphididae) for 4 whaet cultivars at 3 irrigation levels. J Econom Entomol 88:169–174

    Google Scholar 

  • Fakhoury AM, Woloshuk CP (2001) Inhibition of growth of Aspergillus flavus and fungal alpha-amylases by a lectin-like protein from Lablab purpureus. Mol Plant-Microbe Interact 14:955–961

    Article  CAS  PubMed  Google Scholar 

  • Gilgen AK, Feller U (2013) Drought stress alters solute allocation in broadleaf dock (Rumex obtusifolius). Weed Sci 61:104–108

    Article  CAS  Google Scholar 

  • Gilgen AK, Signarbieux C, Feller U, Buchmann N (2010) Competitive advantage of Rumex obtusifolius L. might increase in intensively managed temperate grasslands under drier climate. Agri Eco Environ 135:15–23

  • Godfrey LD, Holtzer TO, Spomer SM, Norman JM (1991a) European cornborer (Lepidoptera, Pyralidae) tunneling and drought stress-effects on corn yield. J Econ Entomol 84:1850–1860

    Google Scholar 

  • Godfrey LD, Holtzer TO, Norman JM (1991b) Effects of European cornborer (Lepidoptera, Pyralidae) tunneling and drought stress-effects on field corn gas-exchange papameters. J Econom Entomol 84:1370–1380

    Google Scholar 

  • Godfrey LD, Norman JM, Holtzer TO (1992) Interactive effects of European cornborer (Lepidoptera, Pyralidae) tunneling and drought stress on field corn water relations. Environ Entomol 21:1060–1071

    Google Scholar 

  • Grey WE, Engel RE, Matre DE (1991) Reaction of spring barley to common root-rot under several moisture regimes- effect on yield components, plant stand and disease severity. Canad J Plant Sci 71:461–472

    Article  Google Scholar 

  • Guo BZ, Chen ZY, Lee RD, Scully BT (2008) Drought stress and preharvest aflatoxin contamination in agricultural commodity: genetics, genomics and proteomics. J Integr Plant Biol 50:1281–1291

    Article  CAS  PubMed  Google Scholar 

  • Hare MC, Parry DW (1996) Observations on the maintenance and measurement of soil water in simple pot experiments and its effects on seed-borne Fusarium culmorum seedling blight of winter wheat. Annals appl Biol 129:227–235

  • Honek A, Jarosik V, Lapchin L, Rabasse JM (1998) The effect of parasitism by Aphelinus abdominalis and drought on the walking mobvement of aphids. Entomologia Experimentalis et Allpicata 87:191–200

  • Horn BW, Greene RL, Dorner JW (1995) Effect of corn and peanut cultivation on soil populations of Aspergillus flavus and Aspergillus parasiticus in Southwestern Georgia. Appl Environ Microbiol 61:2472–2475

  • Horn BW, Sorensen RB, Lamb MC, Sobolev VS, Olarte RA, Worthington CJ, Carbone I (2014) Sexual reproduction in Aspergillus flavus sclerotia naturally produced in Corn. Phytopathology 104:75–85

    Article  PubMed  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A serial report of Working Groups I and II of the Intergovernmental Panel on climate change (edited by Field CB, Barros V, Stocker TF, Qin D, Dokkeen DJ, Ebi KL, Mastrandrea MD, Macj KJ, Plattner GK, Allen SK, Ti­gnor M, Midgley PM). Cambridge University Press, Cambridge, 528 S

  • Jacob J (2003) The response of small mammal populations to flooding. Mammal Biol 68:102–111

    Google Scholar 

  • Johnson SN; Staley JT, McLeod FAL, Hartley SE (2011) Plant-medi­ated effects of soil invertebrates and summer drought on above-ground multitrophic interactions. J Ecol 99:57–65

    Article  Google Scholar 

  • Juroszek P, von Tiedemann A (2012a) Climate change and potential future risks through wheat diseases: a review. Europ J Plant Path 136:21–33

    Article  Google Scholar 

  • Juroszek P, von Tiedemann A (2012b) Climate change and agriculture research paper: plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. J Agri Sci 1–26

  • Juroszek P, von Tiedemann A (2013) Climatic changes and the potenti­al future importance of maize diseases: a short review. J Plant Dis Prot 120:49–56

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Sci 319:607–610

    Article  CAS  Google Scholar 

  • Kalberer N, Gisi U (1997) Effect of soil matric potential on sharp eyespot in germinating wheat following seed treatment. Z Pflernährung Bodenk 160:195–199

  • Karley AJ, Parker WE, Pitchford JW, Douglas AE (2004) The mid-season crash in aphid populations: why and how does it occur? Ecol Entom 29:383–388

  • Kebede H, Abbas HK, Fisher DK, Bellaloui N (2012) Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. Toxins 4:1385–1403

    Article  PubMed Central  PubMed  Google Scholar 

  • Kenter C, Hoffmann C, Märländer B (2006) Sugarbeet as raw material – advanced storage management to gain good processing quality. Zuckerindustrie 131:706–720

    CAS  Google Scholar 

  • Kindler SD, Staples R (1981) Schizaphis graminum effect on grain sorghum exposed to severe drought stress. Environ Entomol 10:247–248

  • Kindler SD, Elliott NC, Giles KL, Royer TA, Fuentes-Granados RR, Tao F (2002) Effect of greenbugs (Homoptera: Aphididae) on yield loss of winter wheat. J Economic Entom 95:89–95

    Article  CAS  Google Scholar 

  • Kindler SD, Elliott NC, Giles KL, Royer TA (2003) Economic injury level for the greenbug, Schizaphis graminum, in Oklahoma winter wheat. Southwestern Entomol 28:163–166

    Google Scholar 

  • Lerin J, Koubaiti K (1997) Modelling winter oilseed rape plant infestation by Baris coerulescens (Coleoptera: Curculionidae). Environ Entomol 26:1031–1039

    Google Scholar 

  • Magnussen A, Parsi MA (2013) Aflatoxins, hepatocellular carcinoma and public health. World J Gastroent 19:1508–1512

    Article  Google Scholar 

  • Mahmoudi SB, Ghashghaie S (2013) Reaction of sugar beet S 1 lines and cultivars to different isolates of Macrophomina phaseolina and Rhizoctonia solani AG-2-2IIIB. Euphytica 190:439–445

    Article  CAS  Google Scholar 

  • Mann JA; Tatchell GM, Dupuch MJ, Harrington R; Clark SJ, McCartney HA (1995) Movement of apterous Sitobion avenae (Homoptera: Aphididae) in response to leaf disturbances caused by wind and rain. Annals Appl Biol 126:417–427

    Article  Google Scholar 

  • Martinkova Z, Honek A, Pekar S, Strobach J (2009) Weather and survival of broadleaved dock (Rumex obtusifolius L.) in an unmanaged grassland. J Plant Dis Prot 116:214–217

    Google Scholar 

  • Miller JD (2001) Factors that affect the occurrence of fumonisin. Environ Health Perspect 109:321–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mornhinweg DW, Bregitzer PP, Porter DR, Peairs FB, Baltensperger DD, Hein GL, Randolph TA, Koch M, Walker T (2012) Registration of ‚Stoneham‘ spring feed barley resistant to Russian wheat aphid. J Plant Regis 6:1–5

    Article  Google Scholar 

  • Moya-Elizondo EA (2013) Fusarium crown rot disease: biology, interactions, management and function as a possible sensor of global climate change. Ciencia e investigacion agraria 40:235–252

  • O’Neal ME, Gray ME, Ratcliffe S, Steffey KL (2001) Predicting western corn rootworm (Coleoptera: Chrysomelidae) larval injury to rotated corn with pherocon AM traps in soybeans. Journal of Econo Entomol 94:98–105

    Article  Google Scholar 

  • Oswald CJ, Brewer MJ (1997) Aphid-barley interactions mediated by water stress and barley resistance to Russian wheat aphid (Homo­ptera: Aphididae). Environ Entomol 26:591–602

    Google Scholar 

  • Oztemiz S, Kornosor S (2007) The effects of different irrigation systems on the inundative release of Trichogramma evanescens westwood (Hymenoptera: trichogrammatidae) against Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae) in the second crop maize. Turkish J Agri Forest 31:23–30

    Google Scholar 

  • Parsons MW, Munkvold GP (2010) Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:591–607

  • Paulitz TC (1996) Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Dis 80:674–678

  • Peluola C, Fernando WGD, Huvenaars C, Kutcher C, Lahlali R, Peng G (2013) Effect of flooding on the survival of Leptosphaeria spp. in canola stubble. Plant Path 62:1350–1356

    Article  Google Scholar 

  • Peterson AT, Menon S, Li X (2010) Recent advances in the climate change biology literature: describing the whole elephant. (Wiley Interdisciplinary Reviews.) Climate Change 1:548–555

    Google Scholar 

  • Piva G, Battilani P, Pietri A (2006) Emerging issues in southern Europe: aflatoxins in Italy. In: Mycotoxin factbook: food & feed topics, S 139–153

  • Ponder KL, Pritchard J, Harrington R, Bale JS (2001) Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedlings. Bullet Entomol Res 91:125–130

    CAS  Google Scholar 

  • Pons X, Tatchell GM (1995) Drought stress and cereal aphid performance. Annals Appl Biol 126:19–31

    Article  Google Scholar 

  • Potter KA, Woods HA, Pincebourde S (2013) Microclimatic challenges in global change biology. Global Change Biol 19:2932–2939

    Article  Google Scholar 

  • Prettel LE (2011) Impact of weather and climate extremes. Nova Science Publishers Inc, New York, 235 S

    Google Scholar 

  • Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator–prey interaction strength and population stability. Global Change Biol 16:2145–2157

    Article  Google Scholar 

  • Riedell WE (1989) Effects of the Russian wheat aphid infestation on barley plant-response to drought stress. Physiol Planta 77:587–592

    Article  CAS  Google Scholar 

  • Seidel P (2013) Über die Anpassungsfähigkeit der Blattläuse an Temperaturextrema. Online-Portal klimaps-jki. http://klimaps.jki.bund.de/Ansicht.action?artikel_id=221&suchtext=Blattl%E4use&autortexte=. Zugegriffen: März 2014

  • Sentis A, Hemptinne JL, Brodeur J (2012) Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecol 169:1117–1125

    Article  Google Scholar 

  • Sentis A, Hemptinne JL, Brodeur J (2013) Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Global Change Biol 19:833–842

    Article  Google Scholar 

  • Sip V, Chrpova J, Vacke J, Ovesna J (2004) Possibility of exploiting the Yd2 resistance to BYDV in spring barley breeding. Plant Breed 123:24–29

    Article  Google Scholar 

  • Smiley RW, Collins HP, Rasmussen PE (1996) Diseases of wheat in long-term agronomic experiments at Pendleton, Oregon. Plant Dis 80:813–820

    Article  Google Scholar 

  • Stary P, Lukasova H (2000) Increase of Russian wheat aphid, Diuraphis noxia (Kurdj.) in hot and dry weather (Hom. Aphididae). Anzeiger für Schädlingskunde 75:6–10

  • Sumner LC, Need JT, McNew RW, Dorschner KW, Eikenbary RD, Johnson RC (1983) Responses of Schizaphis graminum (Homoptera: Aphididae)to drought-stressed whaet, using Polyethylene-glycol as a matricum. Environ Entomol 12:919–922

    Google Scholar 

  • Sumner LC, Dorschner KW, Ryan JD, Eikenbary RD, Johnson RC, Mc New RW (1989) Reproduction of Schizaphis graminum (Homoptera, Aphididae) on resistant and susceptible wheat genotypes during simulated drought stress-induced with polyethylene-glycol. Environ Entomol15:756–762

  • Traore SB, Carlson RE, Pilcher CD, Rice ME (2000) Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agronom J 92:1027–1035

    Article  Google Scholar 

  • van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijns C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12

  • Verlinden M, Van Kerkhove A, Nijs I (2013) Effects of experimental climate warming and associated soil drought on the competition between three highly invasive West European alien plant species and native counterparts. Plant Ecol 214:243–254

    Article  Google Scholar 

  • Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biol 17:1301–1310

    Article  Google Scholar 

  • Weigel HJ (2005) Gesunde Pflanzen unter zukünftigen Klima. Wie beeinflusst der Klimawandel die Pflanzenproduktion? Ges Pfl 57:6–17

  • Windham GL, Williams WP, Hawkins LK, Brooks TD (2009) Effect of Aspergillus flavus inoculation methods and environmental conditions on aflatoxin accumulation in corn hybrids. Toxin Rev 28:70–78

    Article  CAS  Google Scholar 

  • Wollecke J, Ispas G, Bolscher B (1996) Microhabitat requirements and effects of flooding on populations of coexisting cranefly species (Tipula, Diptera, Nematocera) in a fen meadow. In: Pfadenhauer J (Hrsg) Verhandlungen der Gesellschaft für Ökologie, Bd 26. S 591–595

  • Xing GM, Zhang J, Liu J, Zhang XY, Wang GX, Wang YF (2003) Impacts of atmospheric CO2 concentrations and soil water on the population dynamics, fecundity and development of the bird cherry-oat aphid Rhopalosiphum padi. Phytopara 31:499–514

  • Yang L, Miao HJ, Li GQ, Yin LM, Huang HC (2007) Survival of the mycoparasite Coniothyrium minitans on flower petals of oilseed rape under field conditions in central China. Biol Control 40:179–186

Download references

Danksagung

Für die Beratung zur technischen Durchführung der Literaturrecherchen danke ich Frau Dr. Heike Riegler und Dr. Olaf Hering vom „Informationszentrum und Bibliothek“ des Julius Kühn- Institutes herzlich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Seidel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, P. Extremwetterlagen und Auswirkungen auf Schaderreger – extreme Wissenslücken. Gesunde Pflanzen 66, 83–92 (2014). https://doi.org/10.1007/s10343-014-0319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-014-0319-8

Schlüsselwörter

Keywords

Navigation