Skip to main content
Log in

Radiation oxidation of phenol in the presence of petrochemical wastewater components

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiolytical decomposition of phenol was investigated at60Co gamma irradiation (1–2 Gy·s−1, ≤10 kGy) of pre- and continuously aerated aqueous solutions at concentrations of phenol 1–100 mg· ·dm−3 and in the presence of sodium hydroxide, sulphuric acid, sodium and ferrous sulphate, formaldehyde, 2-propanol,n-hexane, xylene, benzene, and commercial gasoline. From the decomposition rate at doses 50–400 Gy, a phenomenological model of linear relation between the dose acquired for 37% decomposition (D 37), initial concentration (g·m−3) of phenol (p 0) and of an admixture (s 0) was confirmed in the formD 37=52f tr(p 0+f eq s 0), wheref's are constants which can be attributed to the relative transformation resistance of phenol towards the OH radicals in given matrix (f tr, for pure waterf tr=1) and relative acceptor capacity of competing substrate (f eq). In real wastewaters, the efficient decrease of phenols content may be substantially lower than that in model solutions, obviously due to radiation oxidation of aromates, as proved by irradiation of aqueous solutions of benzene. Technical and economical feasibility of the process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CH. J. TOUHILL, E. C. MARTIN, M. P. FUJIHARA, D. E. OLLSEN, J. E. STEIN, G. MCDONELL, J. Water Pollut. Contr. Fed., 41 (1969) R44.

    Google Scholar 

  2. M. WASHINO, Radiat. Phys. Chem., 18 (1981) 383.

    Google Scholar 

  3. E. P. PETRYAEV, V. I. VLASOV, I. A. SAVUSHKIN, Radiatsionnokhimicheskaya ochistka stochnykh vod i vybrosnykh gazov, Izd. Universitetskore, Minsk, 1985.

    Google Scholar 

  4. J. F. SWINWOOD, T. D. WAITE, P. KRUGER, S. M. RAO, JAEA Bulletin, 36, (1994) No. 1, 11.

    Google Scholar 

  5. S. A. BRUSENTSEVA, P. I. DOLIN, V. N. SHUBIN, A. G. PRIBUSH, Khim. Vys. Energ., 4 (1970) 88.

    Google Scholar 

  6. S. A. BRUSENTSEVA, A. G. PRIBUSH, V. N. SHUBIN, P. I. DOLIN, Khim. Vys. Energ., 4 (1971) 83.

    Google Scholar 

  7. L. M. COFFMAN, D. D. WOODBRIDGE, Bull. Environ. Contam. Toxicol., 11 (1974) 461.

    PubMed  Google Scholar 

  8. O. I. MICIC, M. T. NENADOVIC, V. M. MARKOVIC, in: Radiation for a Clean Environment, Proc. Intern. Symp. 1975, IAEA Vienna, 1975, p. 233.

    Google Scholar 

  9. E. A. PODZOROVA, V. P. PLOTNIKOVA, N. V. BYCHKOV, A. I. KASPEROVICH, Khim. Vys. Energ., 10 (1976) 423.

    Google Scholar 

  10. E. A. PODZOROVA, V. P. PLOTNIKOVA, N. V. BYCHKOV, A. I. KASPEROVICH, Khim. Prom-st (Moscow), No. 1 (1979) 19.

    Google Scholar 

  11. K. TAKIMOTO, K. SATO, S. TSUDA, Bunseki Kagaku, 27 (1978) 514.

    Google Scholar 

  12. S. HASHIMOTO, T. MIYATA, M. WASHINO, W. KAWAKAMI, Environ. Sci. Technol., 13 (1979) 71.

    Google Scholar 

  13. V. MIKULAJ, Z. KIRÁLYOVÁ, Ľ. MÁTEL, Acta F.R.N. Univ. Comen. Form. Prot. Nat., No 5 (1979) 57.

    Google Scholar 

  14. L. V. NEMIROVSKAYA, N. A. VYSOTSKAYA, G. P. ALEEVA, L. G. SHEVCHUK, V. N. ALEKSANDROV, Khim. Tekhnolog. (Kiev), No. 6 (1979) 50.

    Google Scholar 

  15. N. A. VYSOTSKAYA, L. G. SHEVCHUK, G. P. ALEEVA, Khim. Tekhnol. (Kiev), No. 1 (1980) 53.

    Google Scholar 

  16. N. GETOFF, W. LUTZ, Radiat. Phys. Chem., 25 (1985) 21.

    Google Scholar 

  17. N. GETOFF, Appl. Radiation Isotopes, 37 (1986) 1103.

    Google Scholar 

  18. F. MACÁŠEK, A. ŠVEC, Acta F.R.N. Univ. Comen. Form. Prot. Nat., No 5 (1979) 79.

    Google Scholar 

  19. L. A. KULSKII, I. T. GORONOVSKII, A. M. KOGANOVSKII, M. A. SHEVCHENKO, Spravochnik po svoistvam, metodam analiza i ochistke vody, Vol. 1, Naukova Dumka, Kiev, 1980, p. 464.

    Google Scholar 

  20. L. T. BUGAENKO, S. A. KABAKCHI, Metod statsionarnykh kontsentratsii v radiatsionnoi khimii, Moscow State University, Moscow, 1971.

    Google Scholar 

  21. O. NAVRÁTIL, J. HÁLA, R. KOPUNEC, F. MACÁŠEK, V. MIKULAJ, L. LEŠETICKÝ, Nuclear Chemistry, Ellis Horwood, Chichester, 1992, p. 154.

    Google Scholar 

  22. D. I. METELITSA, YE. T. DENISOV, Neftekhimiya, 7 (1967) 65.

    Google Scholar 

  23. D. I. METELITSA, YE. T. DENISOV, Kinetika i Kataliz, 9 (1968) 733.

    Google Scholar 

  24. E. J. LAND, M. EBERT, Trans. Faraday Soc., 63 (1967) 1181.

    Google Scholar 

  25. E. J. FENDLER, J. H. FENDLER, Prog. Phys. Org. Chem., 7 (1970) 229.

    Google Scholar 

  26. A. KH. BREGER, B. I. VAINSHTEIN, N. P. SYRKUS, V. A. GOLDIN, L. V. CHEPEL, Osnovy radiatsionno-khimicheskogo apparato-stroeniya, Atomizdat, Moscow, 1967.

    Google Scholar 

  27. J. LESSEL, H. MÄTSCH, E. HENNING, A. SUESS, A. ROSOPULO, G. SCHURMAN, in: Radiation for a Clean Environment, Proc. Int. Symp., STI/PUB/402, IAEA, Vienna, 1975, p. 447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macášek, F., Mikulaj, V., Rajec, P. et al. Radiation oxidation of phenol in the presence of petrochemical wastewater components. Journal of Radioanalytical and Nuclear Chemistry Articles 191, 129–143 (1995). https://doi.org/10.1007/BF02035992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02035992

Keywords

Navigation