Skip to main content

Nanostructured Carbon-Based Materials for Fuel Cell Applications

  • Chapter
  • First Online:
Carbon Related Materials

Abstract

There are concerns regarding the depletion of the fossil-fuel resources and the destruction of the environment accompanied with drastic climate changes. Hence, researchers have derived attention on looking for an alternative clean, sustainable renewable, highly efficient energy conversion and storage technologies/systems. The fuel cell is one of the most promising renewable energy source that can provide a stable and constant energy output as long as fuel is supplied continuously. Currently, platinum-based metals are the best electrocatalysts for fuel cells applications. However, due to high cost of platinum, the large-scale synthesis and commercialisation of these electrocatalysts is challenging. Apart from its high cost, the Pt-based electrode also suffers from its susceptibility to time-dependent drift and CO deactivation, and it is unselective. For these reasons, many research groups are developing non-platinum electrocatalysts that are more active, stable and more economical. Carbon-based nanostructured and nanosized materials are widely applied to tackle these demanding challenges associated with energy conversion. Nanostructured carbon-based materials have received interest due to their fascinating physical and chemical properties. They have electronic behaviour ranging from metallic to semiconducting that depends on their structure, composition and chirality. In this chapter, numerous types of carbon nanomaterials such as carbon black, carbon nanofibers, carbon nanotubes and graphenes applied in the electrochemical activity of fuel cells are conversed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Fan, B. Zhu, P.C. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45(Dec 2017), 148–176 (2018).

    Google Scholar 

  2. H. Li, Y. Zhang, Q. Wan, Y. Li, N. Yang, Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon N. Y. 131, 111–119 (2018)

    Article  CAS  Google Scholar 

  3. R. Ramachandran, S. Chen, Recent developments in electrode materials for oxygen reduction reaction. Int. J. Electrochem. Sci. 10, 8581–8606 (2015)

    Google Scholar 

  4. C. Hu, D. Liu, Y. Xiao, L. Dai, Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Prog. Nat. Sci. Mater. Int. 28(2), 121–132 (2018)

    Article  CAS  Google Scholar 

  5. A.M. Abdalla, et al., Nanomaterials for solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 82(Sept 2016), 353–368 (2018)

    Google Scholar 

  6. P.G. Grimes, Historical Pathways for Fuel Cells the New Electric Century, Dec 2000

    Google Scholar 

  7. E.I. Ortiz-Rivera, A.L. Reyes-Hernandez, R.A. Febo, Understanding the history of fuel cells. 2(2), 117–122 (2007)

    Google Scholar 

  8. A.D. Moore, Synthesis and characterization of carbon catalyst substrates for fuel cell applications school of chemical engineering and analytical science table of contents. The University of Manchester (2011)

    Google Scholar 

  9. N. Seselj, C. Engelbrekt, J. Zhang, Graphene-supported platinum catalysts for fuel cells. Sci. Bull. 60(9), 864–876 (2015)

    Article  Google Scholar 

  10. M. Bruno, N. Scientific, F.A. Viva, Carbon materials for fuel cells, in Carbon Materials for Fuel Cells, Sept 2014 (Chapter 7)

    Google Scholar 

  11. S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 16(1), 981–989 (2012)

    Article  CAS  Google Scholar 

  12. L. Dai, Carbon-based catalysts for metal-free electrocatalysis. Curr. Opin. Electrochem. 4(1), 18–25 (2017)

    Article  CAS  Google Scholar 

  13. D. Carolina, G. Nu, Nanostructured carbon materials for applications in polymer electrolyte membrane fuel cells. Catalysts 2–272 (2013)

    Google Scholar 

  14. S.P. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43(21), 6799–6833 (2008)

    Article  CAS  Google Scholar 

  15. F.S. da Silva, T.M. de Souza, Novel materials for solid oxide fuel cell technologies: a literature review. Int. J. Hydrogen Energy 42(41), 26020–26036 (2017)

    Article  CAS  Google Scholar 

  16. Hydrogen fuel cell electric bus [Online]. Available: https://www.octa.net/About-OCTA/Environmental-Sustainability/Hydrogen-Fuel-Cell-Electric-Bus/. Accessed: 21 Feb 2019.

  17. S.M. Haile, Fuel cell materials and components. Acta Mater 51, 5981–6000 (2003)

    Article  CAS  Google Scholar 

  18. L. Ge, R. Ran, R. Cai, Z. Shao, Solid-Acid Fuel Cells, Mar 2008, pp. 2–21.

    Google Scholar 

  19. Y.I. Kim, D. Soundararajan, C.W. Park, S.H. Kim, J.H. Park, J.M. Ko, Electrocatalytic properties of carbon nanofiber web—supported nanocrystalline Pt catalyst as applied to direct methanol fuel cell. Int. J. Electrochem. Sci. 4, 1548–1559 (2009)

    CAS  Google Scholar 

  20. M. Liu, R. Zhang, W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014)

    Article  CAS  Google Scholar 

  21. W. Liu, Q. Ru, S. Zuo, S. Yang, J. Han, C. Yao, Controllable synthesis of nitrogen-doped carbon nanotubes derived from halloysite-templated polyaniline towards nonprecious ORR catalysts. Appl. Surf. Sci. 469(Oct 2018), 269–275 (2019)

    Google Scholar 

  22. E. Antolini, Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B Environ. 88(1–2), 1–24 (2009)

    CAS  Google Scholar 

  23. J.R. Siqueira, O.N. Oliveira, Carbon-based nanomaterials. Nanostructures, 233–249 (2017)

    Google Scholar 

  24. A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5(1), 1–23 (2012)

    Article  CAS  Google Scholar 

  25. L. Calvillo, V. Celorrio, J.I. Pardo, S. Perathoner, R. Moliner, Study and Application of Carbon Black Vulcan Xc-72R in Polymeric Electrolyte Fuel Cells, Jan 2011

    Google Scholar 

  26. A. Bayrakçeken, et al., Vulcan-supported Pt electrocatalysts for PEMFCs prepared using supercritical carbon dioxide deposition. Chem. Eng. Commun. 6445(196:1–2), 194–203 (2008)

    Google Scholar 

  27. M. Carmo, M. Linardi, J. Guilherme, R. Poco, H2O2 treated carbon black as electrocatalyst support for polymer electrolyte membrane fuel cell applications. Int. J. Hydrogen Energy 33(21), 6289–6297 (2008)

    Article  CAS  Google Scholar 

  28. L.T. Soo, K.S. Loh, A.B. Mohamad, W.R.W. Daud, W.Y. Wong, An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Appl. Catal. A Gen. 497, 198–210 (2015)

    Article  CAS  Google Scholar 

  29. Y.J. Wang, B. Fang, H. Li, X.T. Bi, H. Wang, Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog. Mater. Sci. 82, 445–498 (2016)

    Article  CAS  Google Scholar 

  30. S. Ergun, Structure of carbon. Carbon 6, 141–159 (1968)

    Google Scholar 

  31. P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon N. Y. 75, 5–42 (2014)

    Article  CAS  Google Scholar 

  32. J. Liang, S.Z. Qiao, G.Q. Lu, D. Hulicova-Jurcakova, Carbon-Based Catalyst Support in Fuel Cell Applications (Elsevier Ltd., 2012)

    Google Scholar 

  33. W. Li, M. Waje, Z. Chen, P. Larsen, Y. Yan, Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon N. Y. 48(4), 995–1003 (2009)

    Article  CAS  Google Scholar 

  34. E. Mshoperi, R. Fogel, J. Limson, Electrochimica acta application of carbon black and iron phthalocyanine composites in bioelectricity production at a brewery wastewater fed microbial fuel cell. Electrochim. Acta 128, 311–317 (2014)

    Article  CAS  Google Scholar 

  35. S.A.S. Machado, O. Fatibello-Filho, P.A. Raymundo-Pereira, B.C. Janegitz, F.C. Vicentini, Nanostructured carbon black for simultaneous sensing in biological fluids. Sens. Actuators B Chem. 227, 610–618 (2016)

    Article  CAS  Google Scholar 

  36. M.R. Berber, I.H. Hafez, T. Fujigaya, N. Nakashima, A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci. Rep. 5, 1–11 (2015)

    Article  CAS  Google Scholar 

  37. Z. Xia, G. Sun, L. Yuan, J. Liu, S. Wang, L. Jiang, Facile synthesis of silver nanoparticles supported on three dimensional graphene oxide/carbon black composite and its application for oxygen reduction reaction. Electrochim. Acta 135, 168–174 (2014)

    Article  CAS  Google Scholar 

  38. B. Habibi, S. Mohammadyari, Palladium nanoparticles/nanostructured carbon black composite on carbon-ceramic electrode as an electrocatalyst for formic acid fuel cells. J. Taiwan Inst. Chem. Eng. 58, 245–251 (2016)

    Article  CAS  Google Scholar 

  39. A. Riese, Nanostructured Carbon Materials for Active and Durable Keywords, Oct 2015.

    Google Scholar 

  40. M. Srivastava, M. Kumar, R. Singh, U.C. Agrawal, M.O. Garg, Energy-related applications of carbon materials—a review. 68(Feb), 93–96 (2009).

    Google Scholar 

  41. T. Tamaki, H. Wang, N. Oka, I. Honma, S.H. Yoon, T. Yamaguchi, Correlation between the carbon structures and their tolerance to carbon corrosion as catalyst supports for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 43(12), 6406–6412 (2018)

    Article  CAS  Google Scholar 

  42. A. Bayrakçeken Yurtcan, E. Daş, Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. Int. J. Hydrogen Energy, 1–11 (2018)

    Google Scholar 

  43. T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem. Commun. c, 840–841 (2004)

    Google Scholar 

  44. S. Celebi, Carbon Nanofiber Electrodes for PEM Fuel Cells (2012)

    Google Scholar 

  45. K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J. Appl. Electrochem. 60, 507–522 (2006)

    Google Scholar 

  46. F. Yuan, H. Ryu, The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 15(10) (2004)

    Google Scholar 

  47. G. Sun, L. Sun, H. Xie, J. Liu, Electrospinning of nanofibers for energy applications. Nanomaterials 6(7), 129 (2016)

    Google Scholar 

  48. W. Xi-Zhao, Platinum nanoparticles supported on carbon nanofibers as anode electrocatalysts for proton exchange membrane fuel cells. Acta Phys. Chim. Sin. 27(8), 1875–1880 (2011)

    Google Scholar 

  49. T. Promanan, T. Sarakonsri, Synthesis and characterization of palladium-based nano-catalyst on N-doped graphene for direct ethanol fuel cells. Rev. Adv. Mater. Sci. 52, 107–112 (2017)

    CAS  Google Scholar 

  50. E. Herna, et al., Chemical modification of carbon nanofibers with plasma of acrylic acid. Plasma Process. Polym. i, 627–633 (2013)

    Google Scholar 

  51. D. Soundararajan, J.H. Park, K.H. Kim, J.M. Ko, Pt–Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells. Curr. Appl. Phys. 12(3), 854–859 (2012)

    Article  Google Scholar 

  52. S. Uhm, B. Jeong, J. Lee, A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim. Acta 56(25), 9186–9190 (2011)

    Article  CAS  Google Scholar 

  53. M. Shanbedi, S. Zeinali, A. Amiri, E. Hosseinipour, H. Eshghi, S.N. Kazi, Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers. Manag. 105, 1366–1376 (2015)

    Article  CAS  Google Scholar 

  54. K.S. Ibrahim, Carbon nanotubes-properties and applications: a review. Carbon Lett. 14(3), 131–144 (2013)

    Article  Google Scholar 

  55. B.K. Kaushik, M.K. Majumder, Carbon nanotube based VLSI interconnects: analysis and design. SpringerBriefs Appl. Sci. Technol., i–iv (2015). 9788132220466

    Google Scholar 

  56. J.M. Herrera-Ramirez, R. Perez-Bustamante, A. Aguilar-Elguezabal, An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes (Elsevier Inc., 2018)

    Google Scholar 

  57. P.S.S.R. Kumar, S.J. Alexis, Synthesized Carbon Nanotubes and Their Applications (Elsevier Inc., 2018)

    Google Scholar 

  58. S. Buller, M. Heise-Podleska, N. Pfänder, M. Willinger, R. Schlögl, Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: influences of pre-treatment procedures. J. Energy Chem. 25, 265–271 (2016)

    Google Scholar 

  59. A.J. Page, F. Ding, S. Irle, K. Morokuma, Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Rep. Prog. Phys. 78(3) (2015)

    Google Scholar 

  60. S. Ravi, S. Vadukumpully, Sustainable carbon nanomaterials: recent advances and its applications in energy and environmental remediation. J. Environ. Chem. Eng. 4(1), 835–856 (2016)

    Article  CAS  Google Scholar 

  61. M.H.-O. Rashid, S.F. Ralph, Carbon nanotube membranes: synthesis, properties, and future filtration applications. Nanomaterials 7(5), 99 (2017)

    Google Scholar 

  62. S.C. Motshekga, S.K. Pillai, S. Sinha Ray, K. Jalama, R.W.M. Krause, Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J. Nanomater. 2012 (2012)

    Google Scholar 

  63. V.T. Le, C.L. Ngo, Q.T. Le, T.T. Ngo, Surface modification and functionalization of carbon nanotube with some organic compounds. Nanotechnology, 2–7 (2013)

    Google Scholar 

  64. M. Liu et al., Pd nanoparticles supported on three-dimensional graphene aerogels as highly efficient catalysts for methanol electrooxidation. Electrochim. Acta 178, 838–846 (2015)

    Article  CAS  Google Scholar 

  65. N. Shaari, S.K. Kamarudin, Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: an overview. Renew. Sustain. Energy Rev. 69(July 2016), 862–870 (2017)

    Google Scholar 

  66. A. Jana, E. Scheer, S. Polarz, Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8(1), 688–714 (2017)

    Article  CAS  Google Scholar 

  67. Y. Zhu et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  CAS  Google Scholar 

  68. S.K. Bikkarolla, P. Cumpson, P. Joseph, P. Papakonstantinou, Oxygen reduction reaction by electrochemically reduced graphene oxide. Faraday Discuss. 173, 415–428 (2014)

    Article  CAS  Google Scholar 

  69. C.P. Deming, R. Mercado, V. Gadiraju, S. W. Sweeney, M. Khan, S. Chen, Graphene quantum dots-supported palladium nanoparticles for efficient electrocatalytic reduction of oxygen in alkaline media. ACS Sustain. Chem. Eng., 1–9 (2015)

    Google Scholar 

  70. R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale 5(1), 38–51 (2013)

    Article  CAS  Google Scholar 

  71. K. Jukk, N. Kongi, L. Matisen, T. Kallio, K. Kontturi, K. Tammeveski, Electrochimica acta electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochim. Acta 137, 206–212 (2014)

    Article  CAS  Google Scholar 

  72. J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: graphene. Am. Chem. Soc. Nano 5(1), 608–612 (2010)

    Google Scholar 

  73. X. Liu, C.-Z. Wang, M. Hupalo, H.-Q. Lin, K.-M. Ho, M. Tringides, Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3(1), 79–111 (2013)

    Article  CAS  Google Scholar 

  74. Z. Yang, H. Nie, X. Chen, S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236, 238–249 (2013)

    Article  CAS  Google Scholar 

  75. L.F. Mabena, S. Sinha Ray, S.D. Mhlanga, and N. J. Coville, Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 1(2), 67–77 (2011)

    Google Scholar 

  76. S. Ren, F. Huang, J. Zheng, S. Chen, H. Zhang, Ruthenium supported on nitrogen-doped ordered mesoporous carbon as highly active catalyst for NH3 decomposition to H2. Int. J. Hydrogen Energy 42(8), 5105–5113 (2017)

    Article  CAS  Google Scholar 

  77. S. Samad et al., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrogen Energy 43(16), 7823–7854 (2018)

    Article  CAS  Google Scholar 

  78. J.A. Prithi, N. Rajalakshmi, G. Ranga Rao, Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 43(9), 4716–4725 (2018)

    Google Scholar 

  79. D. Puthusseri, S. Ramaprabhu, Oxygen reduction reaction activity of platinum nanoparticles decorated nitrogen doped carbon in proton exchange membrane fuel cell under real operating conditions. Int. J. Hydrogen Energy 41(30), 13163–13170 (2016)

    Article  CAS  Google Scholar 

  80. R. Yadav, C.K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J. Sci. Adv. Mater. Dev. 2(2), 141–149 (2017)

    Google Scholar 

  81. H. Miao et al., Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. Int. J. Hydrogen Energy 42(47), 28298–28308 (2017)

    Article  CAS  Google Scholar 

  82. S. Zhuang, B.B. Nunna, D. Mandal, E.S. Lee, A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano Struct. Nano Obj. 15, 140–152 (2018)

    Article  CAS  Google Scholar 

  83. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)

    Article  CAS  Google Scholar 

  84. B. Li, S.H. Chan, PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading. Int. J. Hydrogen Energy 38(8), 3338–3345 (2013)

    Article  CAS  Google Scholar 

  85. R.I. Jafri, N. Rajalakshmi, K.S. Dhathathreyan, S. Ramaprabhu, Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int. J. Hydrogen Energy 40(12), 4337–4348 (2015)

    Article  CAS  Google Scholar 

  86. W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Influence of nitrogen doping on carbon nanotubes towards the structure, composition and oxygen reduction reaction. Int. J. Hydrogen Energy 38(22), 9421–9430 (2013)

    Article  CAS  Google Scholar 

  87. A. Pullamsetty, M. Subbiah, R. Sundara, Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 40(32), 10251–10261 (2015)

    Article  CAS  Google Scholar 

  88. Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22(2), 390–395 (2012)

    Article  CAS  Google Scholar 

  89. J.C. Li, P.X. Hou, M. Cheng, C. Liu, H.M. Cheng, M. Shao, Carbon nanotube encapsulated in nitrogen and phosphorus co-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Carbon N. Y. 139, 156–163 (2018)

    Article  CAS  Google Scholar 

  90. Z. Cui, S. Wang, Y. Zhang, M. Cao, A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction. J. Power Sources 259, 138–144 (2014)

    Article  CAS  Google Scholar 

  91. J. Liu, P. Song, Z. Ning, W. Xu, Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis 6(2), 132–147 (2015)

    Article  CAS  Google Scholar 

  92. J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angewandte sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed., 11496–11500 (2012)

    Google Scholar 

  93. D.C. Higgins, A. Hoque, F. Hassan, J. Choi, B. Kim, Z. Chen, Oxygen reduction on graphene—carbon nanotube composites doped sequentially with nitrogen and sulfur. Acs Catal. (2014)

    Google Scholar 

  94. J. Jin, et al., Catalyst-free synthesis of crumpled boron and nitrogen co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano 4, 3313–3321 (2014)

    Google Scholar 

  95. P.A. Denis, C.P. Huelmo, F. Iribarne, Theoretical characterization of sulfur and nitrogen dual-doped graphene. Comput. Theor. Chem. 1049, 13–19 (2014)

    Article  CAS  Google Scholar 

  96. A. Zehtab Yazdi, E.P.L. Roberts, U. Sundararaj, Nitrogen/sulfur co-doped helical graphene nanoribbons for efficient oxygen reduction in alkaline and acidic electrolytes. Carbon N. Y. 100, 99–108 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors immensely appreciate the financial support from the National Research Foundation (NRF) (UID Nos. 113561, 117727 and 117984), Tshwane University of Technology and University of Limpopo, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Letlhogonolo Fortunate Mabena , Katlego Makgopa or Mpitloane Joseph Hato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mabena, L.F., Makgopa, K., Tanko-Djoubi, A.S., Modibane, K.D., Hato, M.J. (2021). Nanostructured Carbon-Based Materials for Fuel Cell Applications. In: Kaneko, S., et al. Carbon Related Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7610-2_15

Download citation

Publish with us

Policies and ethics