Skip to main content

Strategies to Reduce/Manage Fish Waste

  • Chapter
  • First Online:
Fish Waste to Valuable Products

Abstract

Recovery of fish waste has taken the priorities of industrialist and scientists, given its richness in high-value products. A better management of this marine resource could increase the profit margin and reduce environmental pollution. During last decade, fish wastes were used as raw material of some marine biopolymers such as chitin/chitosan and its derivatives, gelatin and collagen, mineral compound as hydroxyapatite, and vitamins. Thus, fish waste could transform into animal feed (fish meal or pet feed), fish silage, protein hydrolysates, bioactive peptide, omega-3, biodiesel/biogas, and soil fertilizer. However, their application is limited to the laboratory scale. This chapter will highlight fish waste as feedstock of marine compounds and different strategies to reduce and manage fish wastes. The best management of fish wastes could enhance a circular economy and zero marine waste; consequently, it could open new avenues for natural marine compounds.

Graphical abstract for fish waste management

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudamia FZ, Kharroubi M, Neffa M, Aatab F, Hanoune S, Bouchdoug M, Jaouad A (2020a) Potential of discarded sardine scales (Sardina pilchardus) as chitosan sources. J Air Waste Manag Assoc 70(11):1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Aboudamia F, Kharroubi M, Neffa M, Jaouad A, Bouchdoug M (2020b) Extraction and characterization of ß-chitin from sardine’s scales Sardina pilchardus (Walbaum, 1792). Moroc J Chem 8(1):8–1

    Google Scholar 

  • Aboudamia FZ, Aatab F, Jaouad A, Bouchdoug M, Kharroubi M (2021) Sardine scales: a promising source of marine biomaterials. Lett Appl NanoBioScience 11:3954–3969

    Article  Google Scholar 

  • Abuine R, Rathnayake AU, Byun HG (2019) Biological activity of peptides purified from fish skin hydrolysates. Fish Aquat Sci 22(1):1–14

    Article  CAS  Google Scholar 

  • Austin PR (1973) Solvents for and purification of chitin, pp 2–4. United States Patent

    Google Scholar 

  • Baxter A, Dillon M, Taylor KA, Roberts GA (1992) Improved method for i.r. determination of the degree of N-acetylation of chitosan. Int J Biol Macromol 14(3):166–169

    Article  CAS  PubMed  Google Scholar 

  • Behçet R (2011) Performance and emission study of waste anchovy fish biodiesel in a diesel engine. Fuel Process Technol 92(6):1187–1194

    Article  Google Scholar 

  • Bhaskar SV (2018) A comprehensive review on waste fish oil as feed-stock of biodiesel. Int J Res Appl Sci Eng Technol 6(3):1374–1378

    Article  Google Scholar 

  • Boarin-Alcalde L, Graciano-Fonseca G (2016) Alkali process for chitin extraction and chitosan production from Nile tilapia (Oreochromis niloticus) scales. Lat Am J Aquat Res 44(4):683–688

    Article  Google Scholar 

  • Bogard JR, Thilsted SH, Marks GC, Wahab MA, Hossain MA, Jakobsen J, Stangoulis J (2015) Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J Food Compos Anal 42:120–133

    Article  CAS  Google Scholar 

  • Boyd CE, McNevin AA, Davis RP (2022) The contribution of fisheries and aquaculture to the global protein supply. Food Secur 1–23

    Google Scholar 

  • Brandelli A, Daroit DJ, Corrêa APF (2015) Whey as a source of peptides with remarkable biological activities. Food Res Int 73:149–161

    Article  CAS  Google Scholar 

  • Bücker F, Marder M, Peiter MR, Lehn DN, Esquerdo VM, de Almeida Pinto LA, Konrad O (2020) Fish waste: an efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renew Energy 147:798–805

    Google Scholar 

  • Cadavid-Rodríguez LS, Vargas-Muñoz MA, Plácido J (2019) Biomethane from fish waste as a source of renewable energy for artisanal fishing communities. Sustain Energy Technol Assess 34:110–115

    Google Scholar 

  • Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142(3):592S-599S

    Article  CAS  PubMed  Google Scholar 

  • Caruso G (2016) Fishery wastes and by-products: a resource to be valorized. J Fish Sci 10(1):0–0

    Google Scholar 

  • Chaddha A, Eagle KA (2015) Omega-3 fatty acids and heart health. Circulation 132(22):pe350–e352

    Google Scholar 

  • Clawson G, Kuempel CD, Frazier M, Blasco G, Cottrell RS, Froehlich HE, Metian M, Nash KL, Tobben J, Verstaen J, Williams DR, Halpern BS (2022) Mapping the spatial distribution of global mariculture production. Aquaculture 553:738066

    Article  Google Scholar 

  • Commission E. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018.pdf. Last Accessed 17 Sept 2020

  • Coppola G, Gaudio MT, Lopresto CG, Calabro V, Curcio S, Chakraborty S (2021) Bioplastic from renewable biomass: a facile solution for a greener environment. Earth Syst Environ 5:231–251

    Google Scholar 

  • Daboor SM, Budge SM, Ghaly AE, Brooks MS, Dave D (2012) Isolation and activation of collagenase from fish processing waste

    Google Scholar 

  • Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A (2022) Biofertilizer: the future of food security and food safety. Microorganisms 10(6):1220

    Google Scholar 

  • Darmon SE, Rudall KM (1950) Infra-red and X-ray studies of chitin. Discuss Faraday Soc 9:251–260

    Article  Google Scholar 

  • de Melo D, Oliveira V, Assis CRD, Herculano PN, Cavalcanti MTH, de Souza Bezerra R, Figueiredo AL (2017) Collagenase from smooth weakfish: extraction, partial purification, characterization and collagen specificity test for industrial application. Bol Inst Pesca 43(1):52–64

    Google Scholar 

  • Derkach SR, Voron’ko NG, Kuchina YA, Kolotova DS (2020) Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers 12(12):3051

    Google Scholar 

  • Domínguez-Delgado CL, Rodríguez-Cruz IM, Fuentes-Prado E, Escobar-Chávez JJ, Vidal-Romero G, García-González L, Puente-Lee RI (2014) Drug carrier systems using chitosan for non parenteral routes. Pharmacology and Therapeutics

    Google Scholar 

  • El Amerany F, Rhazi M, Wahbi S, Taourirte M, Meddich A (2020) The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci Hortic 261:109015

    Article  Google Scholar 

  • El Amerany F, Taourirte M, Wahbi S, Meddich A, Rhazi M (2021) Use of metabolomics data analysis to identify fruit quality markers enhanced by the application of an aminopolysaccharide. RSC Adv 11(56):35514–35524

    Article  Google Scholar 

  • El Amerany F, Rhazi M, Balcke G, Wahbi S, Meddich A, Taourirte M, Hause B (2022) The effect of chitosan on plant physiology, wound response, and fruit quality of tomato. Polymers 14(22):5006

    Article  PubMed  PubMed Central  Google Scholar 

  • Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4(3):411

    CAS  Google Scholar 

  • Fernandes P (2016) Enzymes in fish and seafood processing. Front Bioeng Biotechnol 4:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisheries FAO (2022) Aquaculture Division. Rome: Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F (2021) Hydroxyapatite for biomedical applications: a short overview. Ceramics 4(4):542–563

    Article  CAS  Google Scholar 

  • Fratzl P (2008) Collagen: structure and mechanics, an introduction. In: Fratzl P (ed) Collagen. Springer, Boston, pp 1–13

    Chapter  Google Scholar 

  • Friess W (1998) Collagen–biomaterial for drug delivery. Eur J Pharm Biopharm 45(2):113–136

    Article  CAS  PubMed  Google Scholar 

  • Gildberg AR (2004) Enzymes and bioactive peptides from fish waste related to fish silage, fish feed and fish sauce production. J Aquat Food Prod Technol 13(2):3–11

    Article  CAS  Google Scholar 

  • Granito RN, Renno ACM, Yamamura H, de Almeida MC, Ruiz PLM, Ribeiro DA (2018) Hydroxyapatite from fish for bone tissue engineering: a promising approach. Int J Mol Cell Med 7(2):80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hepsibha BT, Geetha A (2021) Effect of Biofertilizer (Fermented fish waste–Gunapaselam) on structure and biochemical components of Vigna radiata leaves. Res J Chem Environ 25:7

    Google Scholar 

  • Hülya S, Tahir SYA (2021). Aquaculture production of North African countries in the year 2030. Surv Fish Sci 8(1):107–118

    Google Scholar 

  • Illera-Vives M, Seoane Labandeira S, Brito LM, López-Fabal A, López-Mosquera ME (2015) Evaluation of compost from seaweed and fish waste as a fertilizer for horticultural use. Sci Hortic 186(2018):101–107

    Article  CAS  Google Scholar 

  • Inguglia L, Chiaramonte M, Di Stefano V, Schillaci D, Cammilleri G, Pantano L, Mauro M, Vazzana M, Ferrantelli V, Nicolosi R, Arizza V (2020) Salmo salar fish waste oil: fatty acids composition and antibacterial activity. PeerJ 8:e9299

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanovs K, Blumberga D (2017) Extraction of fish oil using green extraction methods: a short review. Energy Procedia 128:477–483

    Article  CAS  Google Scholar 

  • Jiang Q, Yang F, Jia S, Yu D, Gao P, Xu Y, Xia W (2022) The role of endogenous proteases in degrading grass carp (Ctenopharyngodon idella) myofibrillar structural proteins during ice storage. LWT 154:112743

    Article  CAS  Google Scholar 

  • Jubin JJ, Radzi NM (2022) Application of fish waste fertilizer on the growth of maize (Zea mays). In: IOP conference series: earth and environmental science, vol 1059, no 1, p 012070). IOP Publishing. Food and Agriculture Organization of the United Nations FAO 2015, World State of Soil Resources

    Google Scholar 

  • Jung JM, Oh JI, Park YK, Lee J, Kwon EE (2019) Biodiesel synthesis from fish waste via thermally-induced transesterification using clay as porous material. J Hazard Mater 371:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kannahi M, Arulmozhi R (2013) Production of biodiesel from edible and non-edible oils using Rhizopus oryzae and Aspergillus niger. Asian J Plant Sci Res 3(5):60–64

    Google Scholar 

  • Karkal SS, Kudre TG (2020) Valorization of fish discards for the sustainable production of renewable fuels. J Clean Prod 275:122985

    Article  CAS  Google Scholar 

  • Kerian K (2019) Synthesis and characterization of hydroxyapatite powder from fish bones and scales using calcination method. Synthesis 28(18):82–87

    Google Scholar 

  • Khoddami A, Ariffin AA, Bakar J, Ghazali HM (2009) Fatty acid profile of the oil extracted from fish waste (head, intestine and liver) (Sardinella lemuru). World Appl Sci J 7(1):127–131

    CAS  Google Scholar 

  • Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM (2021) Antimicrobial activity of chemically and biologically treated chitosan prepared from black soldier fly (Hermetia illucens) Pupal Shell Waste. Microorganisms 9(12):2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langberg H, Skovgaard D, Petersen LJ, Bülow J, Kjær M (1999) Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol 521(1):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G (2019) Hydrolyzed collagen—sources and applications. Molecules 24(22):4031

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu Y, Li R, Bai H, Zhu Z, Zhu L, Zhu C, Che Z, Liu H, Wang L, Huang L (2021) Collagen-based biomaterials for bone tissue engineering. Mater Des 210:110049

    Article  CAS  Google Scholar 

  • Lock EJ, Waagbø R, Wendelaar Bonga S, Flik G (2010) The significance of vitamin D for fish: a review. Aquac Nutr 16(1):100–116

    Article  CAS  Google Scholar 

  • Martínez JP, Falomir MP, Gozalbo D (2001) Chitin: a structural biopolysaccharide. eLS

    Google Scholar 

  • Masso-Silva JA, Diamond G (2014) Antimicrobial peptides from fish. Pharmaceuticals 7(3):265–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata TM, Mendes AM, Caetano NS, Martins AA (2014) Properties and sustainability of biodiesel from animal fats and fish oil. Chem Eng Trans 38:175–180

    Google Scholar 

  • Molina-Ramírez C, Mazo P, Zuluaga R, Gañán P, Álvarez-Caballero J (2021) Characterization of chitosan extracted from fish scales of the Colombian endemic species Prochilodus Magdalenae as a novel source for antibacterial starch-based films. Polymers 13(13):2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Muslim T, Rahman MH, Begum HA, Rahman MA (2013) Chitosan and carboxymethyl chitosan from fish scales of Labeo rohita. Dhaka Univ J Sci 61(1):145–148

    Article  CAS  Google Scholar 

  • Mustafa N, Ibrahim MHI, Asmawi R, Amin AM (2015) Hydroxyapatite extracted from waste fish bones and scales via calcination method. Appl Mech Mater 287–290

    Google Scholar 

  • Muthumari K, Anand M, Maruthupandy M (2016) Collagen extract from marine finfish scales as a potential mosquito larvicide. Protein J 35(6):391–400

    Article  CAS  PubMed  Google Scholar 

  • Nirmal NP, Maqsood S (2022) Seafood waste utilization: isolation, characterization, functional and bio-active properties, and their application in food and nutrition. Front Nutr 1351

    Google Scholar 

  • Nosheen S, Ajmal I, Song Y (2021) Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13:1868

    Article  Google Scholar 

  • Nurhayati T, Ambarsari L, Nurilmala M, Abdullah A, Rakhmawati IAI (2020) Pepsin activity from gastric of milkfish and catfish in Indonesian Waters. In: IOP conference series: earth and environmental science, vol 404, no 1, p 012060. IOP Publishing

    Google Scholar 

  • Ooi HM, Munawer MH, Kiew PL (2021) Extraction of chitosan from fish scale for food preservation and shelf-life enhancer

    Google Scholar 

  • Pellis A, Guebitz GM, Nyanhongo GS (2022) Chitosan: sources, processing and modification techniques. Gels 8(7):393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertiwi RM, Pamungkas ID, Prastyo DT, Trisdiani DU, Pasaribu E, Nurhayati T (2020) Cathepsin characterization from crude extract of yellow pike (Congresox talabon). In: IOP conference series: earth and environmental science, vol 404, no 1, p 012013). IOP Publishing

    Google Scholar 

  • Pillai SK, Ray SS (2012) Chitosan-based nanocomposites. Nat Polym 2:33–68

    Article  Google Scholar 

  • Pochanavanich P, Suntornsuk W (2002) Fungal chitosan production and its characterization. Lett Appl Microbiol 35(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Reames E (2012) Nutritional benefits of seafood. Southern Regional Aquaculture Center

    Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Romero-Hernández O, Romero S (2018) Maximizing the value of waste: from waste management to the circular economy. Thunderbird Int Bus Rev 60(5):757–764

    Google Scholar 

  • Rosa P, Sassanelli C, Terzi S (2019) Towards circular business models: a systematic literature review on classification frameworks and archetypes. J Clean Prod 236:117696

    Article  Google Scholar 

  • Ruiz GAM, Corrales HFZ (2017) Chitosan, chitosan derivatives and their biomedical applications. Biol Act Appl Mar Polysacch 87

    Google Scholar 

  • Rumengan IFM, Suptijah P, Wullur S, Talumepa A (2017) Characterization of chitin extracted from fish scales of marine fish species purchased from local markets in North Sulawesi, Indonesia. In: IOP conference series: earth and environmental science, vol 89, no 1, p 012028. IOP Publishing

    Google Scholar 

  • Rungruangsak-Torrissen K, Moss R, Andresen LH, Berg A, Waagbø R (2006) Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 32(1):7–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadoun IM (2015) Impact of oil spills on marine life. In: Larramendy ML, Soloneski S (eds) Emerging pollutants in the environment-current and further implications. IntechOpen, London

    Google Scholar 

  • Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47(6):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senevirathne M, Kim SK (2012) Development of bioactive peptides from fish proteins and their health promoting ability. Adv Food Nutr Res 65:235–248

    Article  PubMed  Google Scholar 

  • Shahidi F, Kamil YJ (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol 12(12):435–464

    Article  Google Scholar 

  • Shahsavani S, Abaspour A, Parsaeeyan M, Yonesi Z (2017) Effect of fish waste, chemical fertilizer and biofertilizer on yield and yield components of bean (Vigna sinensis) and some soil properties. Iran J Pulses Res 8(1):45–59

    Google Scholar 

  • Sharma YC, Singh B, Madhu D, Liu Y, Yaakob Z (2014) Fast synthesis of high quality biodiesel from ‘waste fish oil’ by single step transesterification. Biofuel Res J 1(3):78–80

    Google Scholar 

  • Sikorski ZE, Scott DN, Buisson DH, Love RM (1984) The role of collagen in the quality and processing of fish. Crit Rev Food Sci Nutr 20(4):301–343

    Article  CAS  PubMed  Google Scholar 

  • Simpson BK (2007) Pigments from by-products of seafood processing. In: Shahidi F (ed) Maximising the value of marine by-products. Woodhead Publishing

    Google Scholar 

  • Solli L, Schnurer A, Horn SJ (2018) Process performance and population dynamics of ammonium tolerant microorganism during co-digestion of fish waste and manure. Renew Energy 125:529–536

    Article  CAS  Google Scholar 

  • Suriani NW, Komansilan A (2019) Enrichment of omega-3 fatty acids, waste oil by-products canning tuna (Thunnus sp.) with urea crystallization. J Phys Conf Ser 1317:012056

    Google Scholar 

  • Tavares JFP, Baptista JAB, Marcone MF (1997) Milk-coagulating enzymes of tuna fish waste as a rennet substitute. Int J Food Sci Nutr 48(3):169–176

    Article  CAS  PubMed  Google Scholar 

  • Tayel AA, Moussa SH, Wael F, Elguindy NM, Opwis K (2011) Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste. Int J Biol Macromol 49(2):p241-245

    Article  Google Scholar 

  • Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ (2021) Functional and bioactive properties of peptides derived from marine side streams. Mar Drugs 19(2):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usman M, Sahar A, Inam-Ur-Raheem M, Rahman UU, Sameen A, Aadil RM (2022) Gelatin extraction from fish waste and potential applications in food sector. Int J Food Sci Technol 57(1):154–163

    Article  CAS  Google Scholar 

  • Vázquez JA, Hermida-Merino C, Hermida-Merino D, Piñeiro MM, Johansen J, Sotelo CG, Pérez-Martin RI, Valcarcel J (2021) Characterization of gelatin and hydrolysates from valorization of farmed salmon skin by-products. Polymers 13(16):2828

    Article  PubMed  PubMed Central  Google Scholar 

  • Venugopal V (2016) Enzymes from seafood processing waste and their applications in seafood processing. Adv Food Nutr Res 78:47–69

    Article  CAS  PubMed  Google Scholar 

  • Wang H (2021) A review of the effects of collagen treatment in clinical studies. Polymers 13(22):3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White SA, Farina PR, Fulton I (1979) Production and isolation of chitosan from Mucor rouxii. Appl Environ Microbiol 38(2):323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski A Jr, Wiggers VR, Simionatto EL, Meier HF, Barros AAC, Madureira LAS (2010) Biofuels from waste fish oil pyrolysis: chemical composition. Fuel 89(3):563–568

    Article  CAS  Google Scholar 

  • Yahyaee R, Ghobadian B, Najafi G (2013) Waste fish oil biodiesel as a source of renewable fuel in Iran. Renew Sustain Energy Rev 17:312–319

    Article  CAS  Google Scholar 

  • Yulisa A, Chairattanawat C, Park SH, Jannat MAH, Hwang S (2022) Effect of substrate-to-inoculum ratio and temperatures during the start-up of anaerobic digestion of fish waste. Ind Domest Waste Manage 2(1):17–29

    Google Scholar 

  • Zamani A, Edebo L, Sjöström B, Taherzadeh MJ (2007) Extraction and precipitation of chitosan from cell wall of zygomycetes fungi by dilute sulfuric acid. Biomacromol 8(12):3786–3790

    Article  CAS  Google Scholar 

  • Zhou L, Budge SM, Ghaly AE, Brooks MS, Dave D (2011) Extraction, purification and characterization of fish chymotrypsin: a review. Am J Biochem Biotechnol 7(3):104–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Zahra Aboudamia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aboudamia, F.Z., Amerany, F.E., Jaouad, A. (2024). Strategies to Reduce/Manage Fish Waste. In: Maqsood, S., Naseer, M.N., Benjakul, S., Zaidi, A.A. (eds) Fish Waste to Valuable Products. Sustainable Materials and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-8593-7_21

Download citation

Publish with us

Policies and ethics