Skip to main content

Advertisement

Log in

Meet Me Halfway: When Genomics Meets Structural Bioinformatics

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The DNA sequencing technology developed by Frederick Sanger in the 1970s established genomics as the basis of comparative genetics. The recent invention of next-generation sequencing (NGS) platform has added a new dimension to genome research by generating ultra-fast and high-throughput sequencing data in an unprecedented manner. The advent of NGS technology also provides the opportunity to study genetic diseases where sequence variants or mutations are sought to establish a causal relationship with disease phenotypes. However, it is not a trivial task to seek genetic variants responsible for genetic diseases and even harder for complex diseases such as diabetes and cancers. In such polygenic diseases, multiple genes and alleles, which can exist in healthy individuals, come together to contribute to common disease phenotypes in a complex manner. Hence, it is desirable to have an approach that integrates omics data with both knowledge of protein structure and function and an understanding of networks/pathways, i.e. functional genomics and systems biology; in this way, genotype–phenotype relationships can be better understood. In this review, we bring this ‘bottom-up’ approach alongside the current NGS-driven genetic study of genetic variations and disease aetiology. We describe experimental and computational techniques for assessing genetic variants and their deleterious effects on protein structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.genome.gov/gwastudies/.

  2. http://www.wtccc.org.uk/.

  3. http://www.genome.gov/10005107.

  4. http://www.1000genomes.org.

  5. http://www-cryst.bioc.cam.ac.uk/∼sdm/sdm.php.

  6. http://www.bongo.cl.cam.ac.uk/Bongo/.

  7. http://www-cryst.bioc.cam.ac.uk/samul (or http://samul.org, alternatively).

  8. http://www.dasregistry.org/.

References

  1. Metzker, M. L. (2010). Sequencing technologies—The next generation. Nature Reviews. Genetics, 11(1), 31–46.

    PubMed  CAS  Google Scholar 

  2. Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452(7189), 872–876.

    PubMed  CAS  Google Scholar 

  3. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., et al. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.

    PubMed  CAS  Google Scholar 

  4. Hamosh, A., Scott, A. F., Amberger, J., Bocchini, C., Valle, D., & McKusick, V. A. (2002). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 30(1), 52–55.

    PubMed  CAS  Google Scholar 

  5. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 33, D514–517.

    PubMed  CAS  Google Scholar 

  6. Schork, N. J., Fallin, D., & Lanchbury, J. S. (2000). Single nucleotide polymorphisms and the future of genetic epidemiology. Clinical Genetics, 58(4), 250–264.

    PubMed  CAS  Google Scholar 

  7. Kruglyak, L., & Nickerson, D. A. (2001). Variation is the spice of life. Nature Genetics, 27(3), 234–236.

    PubMed  CAS  Google Scholar 

  8. Stephens, J. C., Schneider, J. A., Tanguay, D. A., Choi, J., Acharya, T., Stanley, S. E., et al. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science, 293(5529), 489–493.

    PubMed  CAS  Google Scholar 

  9. Chakravarti, A. (1998). It’s raining SNPs, hallelujah? Nature Genetics, 19(3), 216–217.

    PubMed  CAS  Google Scholar 

  10. Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.

    PubMed  CAS  Google Scholar 

  11. Emahazion, T., Feuk, L., Jobs, M., Sawyer, S. L., Fredman, D., St Clair, D., et al. (2001). SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends in Genetics, 17(7), 407–413.

    PubMed  CAS  Google Scholar 

  12. Pirmohamed, M. (2006). Genetic factors in the predisposition to drug-induced hypersensitivity reactions. The AAPS Journal, 8(1), E20–26.

    PubMed  CAS  Google Scholar 

  13. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33(2), 177–182.

    PubMed  CAS  Google Scholar 

  14. Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273(5281), 1516–1517.

    PubMed  CAS  Google Scholar 

  15. Kruglyak, L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genetics, 22(2), 139–144.

    PubMed  CAS  Google Scholar 

  16. Tsigelny, I. F., Kotlovyi, V., & Wasserman, L. (2004). SNP analysis combined with protein structure prediction defines structure–functional relationships in cancer related cytochrome P450 estrogen metabolism. Current Medicinal Chemistry, 11(5), 525–538.

    PubMed  CAS  Google Scholar 

  17. Botstein, D., & Risch, N. (2003). Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nature Genetics, 33(Suppl), 228–237.

    PubMed  CAS  Google Scholar 

  18. Lander, E. S. (1996). The new genomics: Global views of biology. Science, 274(5287), 536–539.

    PubMed  CAS  Google Scholar 

  19. Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S., et al. (2003). Human Gene Mutation Database (HGMD): 2003 update. Human Mutation, 21(6), 577–581.

    PubMed  CAS  Google Scholar 

  20. Wang, Z., & Moult, J. (2001). SNPs, protein structure, and disease. Human Mutation, 17(4), 263–270.

    PubMed  Google Scholar 

  21. Yue, P., Li, Z., & Moult, J. (2005). Loss of protein structure stability as a major causative factor in monogenic disease. Journal of Molecular Biology, 353(2), 459–473.

    PubMed  CAS  Google Scholar 

  22. Burke, D. F., Worth, C. L., Priego, E. M., Cheng, T., Smink, L. J., Todd, J. A., et al. (2007). Genome bioinformatic analysis of nonsynonymous SNPs. BMC Bioinformatics, 8, 301.

    PubMed  Google Scholar 

  23. Worth, C. L., Bickerton, G. R., Schreyer, A., Forman, J. R., Cheng, T. M., Lee, S., et al. (2007). A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease. Journal of Bioinformatics and Computational Biology, 5(6), 1297–1318.

    PubMed  CAS  Google Scholar 

  24. Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.

    PubMed  CAS  Google Scholar 

  25. Morozova, O., Hirst, M., & Marra, M. A. (2009). Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics, 10, 135–151.

    PubMed  CAS  Google Scholar 

  26. McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., et al. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews. Genetics, 9(5), 356–369.

    PubMed  CAS  Google Scholar 

  27. Weir, B. S. (2008). Linkage disequilibrium and association mapping. Annual Review of Genomics and Human Genetics, 9, 129–142.

    PubMed  CAS  Google Scholar 

  28. Hakonarson, H., Grant, S. F., Bradfield, J. P., Marchand, L., Kim, C. E., Glessner, J. T., et al. (2007). A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature, 448(7153), 591–594.

    PubMed  CAS  Google Scholar 

  29. Todd, J. A., Walker, N. M., Cooper, J. D., Smyth, D. J., Downes, K., Plagnol, V., et al. (2007). Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 39(7), 857–864.

    PubMed  CAS  Google Scholar 

  30. Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445(7130), 881–885.

    PubMed  CAS  Google Scholar 

  31. Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science, 316(5829), 1336–1341.

    PubMed  CAS  Google Scholar 

  32. Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., et al. (2007). Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 39(11), 1329–1337.

    PubMed  CAS  Google Scholar 

  33. Consortium WTCC. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.

    Google Scholar 

  34. Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463(7279), 360–363.

    PubMed  CAS  Google Scholar 

  35. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.

    PubMed  CAS  Google Scholar 

  36. Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196.

    PubMed  CAS  Google Scholar 

  37. Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318(5853), 1108–1113.

    PubMed  CAS  Google Scholar 

  38. Hulbert, E. M., Smink, L. J., Adlem, E. C., Allen, J. E., Burdick, D. B., Burren, O. S., et al. (2007). T1DBase: Integration and presentation of complex data for type 1 diabetes research. Nucleic Acids Research, 35, D742–746.

    PubMed  CAS  Google Scholar 

  39. Forbes, S. A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A., Teague, J. W., Futreal, P. A., & Stratton, M. R. (2008). The Catalogue of Somatic Mutations in Cancer (COSMIC). Current Protococls in Human Genetics, Chapter 10:Unit 10.11.

  40. Church, D. M., Lappalainen, I., Sneddon, T. P., Hinton, J., Maguire, M., Lopez, J., et al. (2010). Public data archives for genomic structural variation. Nature Genetics, 42(10), 813–814.

    PubMed  CAS  Google Scholar 

  41. Yip, Y. L., Scheib, H., Diemand, A. V., Gattiker, A., Famiglietti, L. M., Gasteiger, E., et al. (2004). The Swiss-Prot variant page and the ModSNP database: A resource for sequence and structure information on human protein variants. Human Mutation, 23(5), 464–470.

    PubMed  CAS  Google Scholar 

  42. Mottaz, A., David, F. P., Veuthey, A. L., & Yip, Y. L. (2010). Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics, 26(6), 851–852.

    PubMed  CAS  Google Scholar 

  43. Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 22(3), 231–238.

    PubMed  CAS  Google Scholar 

  44. Sunyaev, S., Hanke, J., Aydin, A., Wirkner, U., Zastrow, I., Reich, J., et al. (1999). Prediction of nonsynonymous single nucleotide polymorphisms in human disease-associated genes. Journal of Molecular Medicine, 77(11), 754–760.

    PubMed  CAS  Google Scholar 

  45. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331.

    PubMed  CAS  Google Scholar 

  46. Solomon, E., & Bodmer, W. F. (1979). Evolution of sickle variant gene. Lancet, 1(8122), 923.

    PubMed  CAS  Google Scholar 

  47. Kan, Y. W., & Dozy, A. M. (1978). Polymorphism of DNA sequence adjacent to human beta-globin structural gene: Relationship to sickle mutation. Proceedings of the National Academy of Sciences of the United States of America, 75(11), 5631–5635.

    PubMed  CAS  Google Scholar 

  48. Feder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A., et al. (1996). A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genetics, 13(4), 399–408.

    PubMed  CAS  Google Scholar 

  49. Enattah, N. S., Sahi, T., Savilahti, E., Terwilliger, J. D., Peltonen, L., & Jarvela, I. (2002). Identification of a variant associated with adult-type hypolactasia. Nature Genetics, 30(2), 233–237.

    PubMed  CAS  Google Scholar 

  50. Kruglyak, L. (2008). The road to genome-wide association studies. Nat Rev Genet, 9, 314–318.

    PubMed  CAS  Google Scholar 

  51. Sunyaev, S., Ramensky, V., & Bork, P. (2000). Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends in Genetics, 16(5), 198–200.

    PubMed  CAS  Google Scholar 

  52. Ferrer-Costa, C., Orozco, M., & de la Cruz, X. (2002). Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. Journal of Molecular Biology, 315(4), 771–786.

    PubMed  CAS  Google Scholar 

  53. Ng, P. C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 11(5), 863–874.

    PubMed  CAS  Google Scholar 

  54. Steward, R. E., MacArthur, M. W., Laskowski, R. A., & Thornton, J. M. (2003). Molecular basis of inherited diseases: A structural perspective. Trends in Genetics, 19(9), 505–513.

    PubMed  CAS  Google Scholar 

  55. Worth CL, Burke DF, Blundell TL (2007) Estimating the effects of single nucleotide polymorphisms on protein structure: How good are we at identifying likely disease associated mutations? Proceedings of Molecular Interactions—Bringing Chemistry to Life, pp. 11–26.

  56. Gong, S., Worth, C. L., Bickerton, G. R., Lee, S., Tanramluk, D., & Blundell, T. L. (2009). Structural and functional restraints in the evolution of protein families and superfamilies. Biochemical Society Transactions, 37(Pt 4), 727–733.

    PubMed  CAS  Google Scholar 

  57. Kimura, M. (1983). The neutral theory of evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  58. Ohta, T. (1973). Slightly deleterious mutant substitutions in evolution. Nature, 246(5428), 96–98.

    PubMed  CAS  Google Scholar 

  59. Worth, C. L., Gong, S., & Blundell, T. L. (2009). Structural and functional constraints in the evolution of protein families. Nature Reviews. Molecular Cell Biology, 10(10), 709–720.

    PubMed  CAS  Google Scholar 

  60. Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., et al. (1983). A polymorphic DNA marker genetically linked to Huntington’s disease. Nature, 306(5940), 234–238.

    PubMed  CAS  Google Scholar 

  61. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., et al. (1989). Identification of the cystic fibrosis gene: Genetic analysis. Science, 245(4922), 1073–1080.

    PubMed  CAS  Google Scholar 

  62. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989). Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science, 245(4922), 1066–1073.

    PubMed  CAS  Google Scholar 

  63. Frazer, K. A., Murray, S. S., Schork, N. J., & Topol, E. J. (2009). Human genetic variation and its contribution to complex traits. Nature Reviews. Genetics, 10(4), 241–251.

    PubMed  CAS  Google Scholar 

  64. Durbin, R. M., Abecasis, G. R., Altshuler, D. L., Auton, A., Brooks, L. D., Durbin, R. M., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.

    PubMed  CAS  Google Scholar 

  65. Matthews, B. W. (1993). Structural and genetic analysis of protein stability. Annual Review of Biochemistry, 62, 139–160.

    PubMed  CAS  Google Scholar 

  66. Pakula, A. A., & Sauer, R. T. (1989). Genetic analysis of protein stability and function. Annual Review of Genetics, 23, 289–310.

    PubMed  CAS  Google Scholar 

  67. Ruotolo, B. T., Benesch, J. L., Sandercock, A. M., Hyung, S. J., & Robinson, C. V. (2008). Ion mobility–mass spectrometry analysis of large protein complexes. Nature Protocols, 3(7), 1139–1152.

    PubMed  CAS  Google Scholar 

  68. McLaughlin, S. H., & Jackson, S. E. (2002). Folding and stability of the ligand-binding domain of the glucocorticoid receptor. Protein Science, 11(8), 1926–1936.

    PubMed  CAS  Google Scholar 

  69. Perrett, S., Freeman, S. J., Butler, P. J., & Fersht, A. R. (1999). Equilibrium folding properties of the yeast prion protein determinant Ure2. Journal of Molecular Biology, 290(1), 331–345.

    PubMed  CAS  Google Scholar 

  70. Jackson, S. E., el Masry, N., & Fersht, A. R. (1993). Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: A critical test of the protein engineering method of analysis. Biochemistry, 32(42), 11270–11278.

    PubMed  CAS  Google Scholar 

  71. Main, E. R., Fulton, K. F., & Jackson, S. E. (1998). Context-dependent nature of destabilizing mutations on the stability of FKBP12. Biochemistry, 37(17), 6145–6153.

    PubMed  CAS  Google Scholar 

  72. Wray, J. W., Baase, W. A., Lindstrom, J. D., Weaver, L. H., Poteete, A. R., & Matthews, B. W. (1999). Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. Journal of Molecular Biology, 292(5), 1111–1120.

    PubMed  CAS  Google Scholar 

  73. Itzhaki, L. S., Evans, P. A., Dobson, C. M., & Radford, S. E. (1994). Tertiary interactions in the folding pathway of hen lysozyme: Kinetic studies using fluorescent probes. Biochemistry, 33(17), 5212–5220.

    PubMed  CAS  Google Scholar 

  74. Mallam, A. L., & Jackson, S. E. (2007). A comparison of the folding of two knotted proteins: YbeA and YibK. Journal of Molecular Biology, 366(2), 650–665.

    PubMed  CAS  Google Scholar 

  75. Clarke, J., Hounslow, A. M., & Fersht, A. R. (1995). Disulfide mutants of barnase. II: Changes in structure and local stability identified by hydrogen exchange. Journal of Molecular Biology, 253(3), 505–513.

    PubMed  CAS  Google Scholar 

  76. Clifford, S. C., Cockman, M. E., Smallwood, A. C., Mole, D. R., Woodward, E. R., Maxwell, P. H., et al. (2001). Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Human Molecular Genetics, 10(10), 1029–1038.

    PubMed  CAS  Google Scholar 

  77. Tanoue, T., Adachi, M., Moriguchi, T., & Nishida, E. (2000). A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nature Cell Biology, 2(2), 110–116.

    PubMed  CAS  Google Scholar 

  78. Takayama, N., Kizaki, M., Hida, T., Kinjo, K., & Ikeda, Y. (2001). Novel mutation in the PML/RARalpha chimeric gene exhibits dramatically decreased ligand-binding activity and confers acquired resistance to retinoic acid in acute promyelocytic leukemia. Experimental Hematology, 29(7), 864–872.

    PubMed  CAS  Google Scholar 

  79. Jackson, S. E., & Fersht, A. R. (1994). Contribution of residues in the reactive site loop of chymotrypsin inhibitor two to protein stability and activity. Biochemistry, 33(46), 13880–13887.

    PubMed  CAS  Google Scholar 

  80. Poliakov, E., Gentleman, S., Cunningham, F. X., Jr., Miller-Ihli, N. J., & Redmond, T. M. (2005). Key role of conserved histidines in recombinant mouse beta-carotene 15,15′-monooxygenase-1 activity. The Journal of Biological Chemistry, 280(32), 29217–29223.

    PubMed  CAS  Google Scholar 

  81. Alber, T., Sun, D. P., Nye, J. A., Muchmore, D. C., & Matthews, B. W. (1987). Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry, 26(13), 3754–3758.

    PubMed  CAS  Google Scholar 

  82. Clarke, J., Henrick, K., & Fersht, A. R. (1995). Disulfide mutants of barnase. I: Changes in stability and structure assessed by biophysical methods and X-ray crystallography. Journal of Molecular Biology, 253(3), 493–504.

    PubMed  CAS  Google Scholar 

  83. Matthews, B. W., Nicholson, H., & Becktel, W. J. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences of the United States of America, 84(19), 6663–6667.

    PubMed  CAS  Google Scholar 

  84. Pace, C. N., Horn, G., Hebert, E. J., Bechert, J., Shaw, K., Urbanikova, L., et al. (2001). Tyrosine hydrogen bonds make a large contribution to protein stability. Journal of Molecular Biology, 312(2), 393–404.

    PubMed  CAS  Google Scholar 

  85. Stollar, E. J., Mayor, U., Lovell, S. C., Federici, L., Freund, S. M., Fersht, A. R., et al. (2003). Crystal structures of engrailed homeodomain mutants: Implications for stability and dynamics. The Journal of Biological Chemistry, 278(44), 43699–43708.

    PubMed  CAS  Google Scholar 

  86. Ekblad, C. M., Wilkinson, H. R., Schymkowitz, J. W., Rousseau, F., Freund, S. M., & Itzhaki, L. S. (2002). Characterisation of the BRCT domains of the breast cancer susceptibility gene product BRCA1. Journal of Molecular Biology, 320(3), 431–442.

    PubMed  CAS  Google Scholar 

  87. Tang, K. S., Guralnick, B. J., Wang, W. K., Fersht, A. R., & Itzhaki, L. S. (1999). Stability and folding of the tumour suppressor protein p16. Journal of Molecular Biology, 285(4), 1869–1886.

    PubMed  CAS  Google Scholar 

  88. Bullock, A. N., Henckel, J., DeDecker, B. S., Johnson, C. M., Nikolova, P. V., Proctor, M. R., et al. (1997). Thermodynamic stability of wild-type and mutant p53 core domain. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14338–14342.

    PubMed  CAS  Google Scholar 

  89. Friedler, A., Veprintsev, D. B., Hansson, L. O., & Fersht, A. R. (2003). Kinetic instability of p53 core domain mutants: Implications for rescue by small molecules. The Journal of Biological Chemistry, 278(26), 24108–24112.

    PubMed  CAS  Google Scholar 

  90. Nikolova, P. V., Henckel, J., Lane, D. P., & Fersht, A. R. (1998). Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14675–14680.

    PubMed  CAS  Google Scholar 

  91. Joerger, A. C., Allen, M. D., & Fersht, A. R. (2004). Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. The Journal of Biological Chemistry, 279(2), 1291–1296.

    PubMed  CAS  Google Scholar 

  92. Joerger, A. C., Ang, H. C., Veprintsev, D. B., Blair, C. M., & Fersht, A. R. (2005). Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. The Journal of Biological Chemistry, 280(16), 16030–16037.

    PubMed  CAS  Google Scholar 

  93. Ang, H. C., Joerger, A. C., Mayer, S., & Fersht, A. R. (2006). Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. The Journal of Biological Chemistry, 281(31), 21934–21941.

    PubMed  CAS  Google Scholar 

  94. Cheon, D. J., & Orsulic, S. (2011). Mouse models of cancer. Annu Rev Pathol, 6, 95–119.

    PubMed  CAS  Google Scholar 

  95. Jucker, M. (2010). The benefits and limitations of animal models for translational research in neurodegenerative diseases. Natural Medicines, 16(11), 1210–1214.

    CAS  Google Scholar 

  96. Scheikl, T., Pignolet, B., Mars, L. T., & Liblau, R. S. (2010). Transgenic mouse models of multiple sclerosis. Cellular and Molecular Life Sciences, 67(23), 4011–4034.

    PubMed  CAS  Google Scholar 

  97. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.

    PubMed  CAS  Google Scholar 

  98. Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.

    PubMed  CAS  Google Scholar 

  99. Lee, D., Redfern, O., & Orengo, C. (2007). Predicting protein function from sequence and structure. Nature Reviews. Molecular Cell Biology, 8(12), 995–1005.

    PubMed  CAS  Google Scholar 

  100. Mooney, S. (2005). Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Briefings in Bioinformatics, 6(1), 44–56.

    PubMed  CAS  Google Scholar 

  101. Ng, P. C., & Henikoff, S. (2006). Predicting the effects of amino acid substitutions on protein function. Annual Review of Genomics and Human Genetics, 7, 61–80.

    PubMed  CAS  Google Scholar 

  102. Topham, C. M., Srinivasan, N., & Blundell, T. L. (1997). Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Engineering, 10(1), 7–21.

    PubMed  CAS  Google Scholar 

  103. Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology, 320(2), 369–387.

    PubMed  CAS  Google Scholar 

  104. Capriotti, E., Fariselli, P., & Casadio, R. (2004). A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics, 20(1), i63–i68.

    PubMed  CAS  Google Scholar 

  105. Capriotti, E., Fariselli, P., Calabrese, R., & Casadio, R. (2005). Predicting protein stability changes from sequences using support vector machines. Bioinformatics, 21(2), 54–58.

    Google Scholar 

  106. Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33, W306–310.

    PubMed  CAS  Google Scholar 

  107. Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132.

    PubMed  CAS  Google Scholar 

  108. Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34, W239–242.

    PubMed  CAS  Google Scholar 

  109. Yin, S., Ding, F., & Dokholyan, N. V. (2007). Modeling backbone flexibility improves protein stability estimation. Structure, 15(12), 1567–1576.

    PubMed  CAS  Google Scholar 

  110. Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology, 22(10), 1302–1306.

    PubMed  CAS  Google Scholar 

  111. Conchillo-Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 8, 65.

    PubMed  Google Scholar 

  112. Trovato, A., Seno, F., & Tosatto, S. C. (2007). The PASTA server for protein aggregation prediction. Protein Engineering, Design & Selection, 20(10), 521–523.

    CAS  Google Scholar 

  113. Morgan, D. H., Kristensen, D. M., Mittelman, D., & Lichtarge, O. (2006). ET viewer: An application for predicting and visualizing functional sites in protein structures. Bioinformatics, 22(16), 2049–2050.

    PubMed  CAS  Google Scholar 

  114. Joachimiak, M. P., & Cohen, F. E. (2002). JEvTrace: Refinement and variations of the evolutionary trace in JAVA. Genome Biology, 3(12), RESEARCH0077.

    PubMed  Google Scholar 

  115. La, D., & Livesay, D. R. (2005). MINER: Software for phylogenetic motif identification. Nucleic Acids Research, 33, W267–270.

    PubMed  CAS  Google Scholar 

  116. Chelliah, V., Blundell, T., & Mizuguchi, K. (2005). Functional restraints on the patterns of amino acid substitutions: Application to sequence–structure homology recognition. Proteins, 61(4), 722–731.

    PubMed  CAS  Google Scholar 

  117. Porter, C. T., Bartlett, G. J., & Thornton, J. M. (2004). The Catalytic Site Atlas: A resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Research, 32, D129–133.

    PubMed  CAS  Google Scholar 

  118. Ivanisenko, V. A., Pintus, S. S., Grigorovich, D. A., & Kolchanov, N. A. (2004). PDBSiteScan: A program for searching for active, binding and posttranslational modification sites in the 3D structures of proteins. Nucleic Acids Research, 32, W549–554.

    PubMed  CAS  Google Scholar 

  119. Golovin, A., Dimitropoulos, D., Oldfield, T., Rachedi, A., & Henrick, K. (2005). MSDsite: A database search and retrieval system for the analysis and viewing of bound ligands and active sites. Proteins, 58(1), 190–199.

    PubMed  CAS  Google Scholar 

  120. Rohl, C. A., Strauss, C. E., Misura, K. M., & Baker, D. (2004). Protein structure prediction using Rosetta. Methods Enzymol, 383, 66–93.

    PubMed  CAS  Google Scholar 

  121. Ng, P. C., & Henikoff, S. (2002). Accounting for human polymorphisms predicted to affect protein function. Genome Research, 12(3), 436–446.

    PubMed  CAS  Google Scholar 

  122. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., 3rd, Kondrashov, A. S., & Bork, P. (2001). Prediction of deleterious human alleles. Human Molecular Genetics, 10(6), 591–597.

    PubMed  CAS  Google Scholar 

  123. Bao, L., Zhou, M., & Cui, Y. (2005). nsSNPAnalyzer: Identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Research, 33, W480–482.

    PubMed  CAS  Google Scholar 

  124. Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 35(11), 3823–3835.

    PubMed  CAS  Google Scholar 

  125. Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22), 2729–2734.

    PubMed  CAS  Google Scholar 

  126. Blundell, T. L., Cooper, J., Donnelly, D., Driessen, H., Edwards, Y., Eisenmenger, F., et al. (1991). Patterns of sequence variation in families of homologous proteins. In H. Jornvall, J. O. Hoog, & A. M. Gustavsson (Eds.), Methods in proteins sequence analysis (pp. 373–385). Basel: Birkhauser Verlag AG.

    Google Scholar 

  127. Overington, J., Johnson, M. S., Sali, A., & Blundell, T. L. (1990). Tertiary structural constraints on protein evolutionary diversity: Templates, key residues and structure prediction. Proc Biol Sci, 241(1301), 132–145.

    PubMed  CAS  Google Scholar 

  128. Ferguson, B. J., Alexander, C., Rossi, S. W., Liiv, I., Rebane, A., Worth, C. L., et al. (2008). AIRE’s CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. The Journal of Biological Chemistry, 283(3), 1723–1731.

    PubMed  CAS  Google Scholar 

  129. Velho, S., Oliveira, C., Paredes, J., Sousa, S., Leite, M., Matos, P., et al. (2010). Mixed lineage kinase three gene mutations in mismatch repair deficient gastrointestinal tumours. Human Molecular Genetics, 19(4), 697–706.

    PubMed  CAS  Google Scholar 

  130. Nagpal, K., Plantinga, T. S., Wong, J., Monks, B. G., Gay, N. J., Netea, M. G., et al. (2009). A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. The Journal of Biological Chemistry, 284(38), 25742–25748.

    PubMed  CAS  Google Scholar 

  131. Rowling, P. J., Cook, R., & Itzhaki, L. S. (2010). Toward classification of BRCA1 missense variants using a biophysical approach. The Journal of Biological Chemistry, 285(26), 20080–20087.

    PubMed  CAS  Google Scholar 

  132. Chelliah, V., Chen, L., Blundell, T. L., & Lovell, S. C. (2004). Distinguishing structural and functional restraints in evolution in order to identify interaction sites. Journal of Molecular Biology, 342(5), 1487–1504.

    PubMed  CAS  Google Scholar 

  133. Lee, S., & Blundell, T. L. (2009). BIPA: A database for protein–nucleic acid interaction in 3D structures. Bioinformatics, 25(12), 1559–1560.

    PubMed  CAS  Google Scholar 

  134. Schreyer, A., & Blundell, T. L. (2009). A protein–ligand interaction database for drug discovery. Chemical Biology & Drug Design, 73, 157–167.

    CAS  Google Scholar 

  135. Forman, J. R., Worth, C. L., Bickerton, G. R., Eisen, T. G., & Blundell, T. L. (2009). Structural bioinformatics mutation analysis reveals genotype–phenotype correlations in von Hippel–Lindau disease and suggests molecular mechanisms of tumorigenesis. Proteins, 77(1), 84–96.

    PubMed  CAS  Google Scholar 

  136. Cangul, H., Morgan, N. V., Forman, J. R., Saglam, H., Aycan, Z., Yakut, T., et al. (2010). Novel TSHR mutations in consanguineous families with congenital nongoitrous hypothyroidism. Clin Endocrinol (Oxf), 73(5), 671–677.

    CAS  Google Scholar 

  137. Ricketts, C. J., Forman, J. R., Rattenberry, E., Bradshaw, N., Lalloo, F., Izatt, L., et al. (2010). Tumor risks and genotype–phenotype–proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Human Mutation, 31(1), 41–51.

    PubMed  CAS  Google Scholar 

  138. Cheng, T. M., Lu, Y. E., Vendruscolo, M., Lio, P., & Blundell, T. L. (2008). Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms. PLoS Computational Biology, 4(7), e1000135.

    PubMed  Google Scholar 

  139. Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., et al. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13(9), 2129–2141.

    PubMed  CAS  Google Scholar 

  140. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., et al. (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4), 248–249.

    PubMed  CAS  Google Scholar 

  141. Bickerton, G. R. (2009). Molecular characterization and evolutionary plasticity of protein–protein interfaces. Cambridge: Emmanuel College, University of Cambridge.

    Google Scholar 

  142. Lee, S., Brown, A., Pitt, W. R., Perez Higueruelo, A., Gong, S., Bickerton, G. R., et al. (2009). Structural interactomics: Informatics approaches to aid the interpretation of genetic variation and the development of novel therapeutics. Molecular Biosystems, 5, 1456–1472.

    PubMed  CAS  Google Scholar 

  143. Mizuguchi, K., Deane, C. M., Blundell, T. L., Johnson, M. S., & Overington, J. P. (1998). JOY: Protein sequence–structure representation and analysis. Bioinformatics, 14(7), 617–623.

    PubMed  CAS  Google Scholar 

  144. Jmol: An open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

  145. Hubbard, T. J., Aken, B. L., Ayling, S., Ballester, B., Beal, K., Bragin, E., et al. (2009). Ensembl 2009. Nucleic Acids Research, 37, D690–697.

    PubMed  CAS  Google Scholar 

  146. Yip, Y. L., Famiglietti, M., Gos, A., Duek, P. D., David, F. P., Gateau, A., et al. (2008). Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Human Mutation, 29(3), 361–366.

    PubMed  CAS  Google Scholar 

  147. Gong, S., & Blundell, T. L. (2008). Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures. PLoS Computational Biology, 4(10), e1000179.

    PubMed  Google Scholar 

  148. Stein, L. D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A., et al. (2002). The generic genome browser: A building block for a model organism system database. Genome Research, 12(10), 1599–1610.

    PubMed  CAS  Google Scholar 

  149. Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., et al. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996–1006.

    PubMed  CAS  Google Scholar 

  150. Harris, T. W., Antoshechkin, I., Bieri, T., Blasiar, D., Chan, J., Chen, W. J., et al. (2010). WormBase: A comprehensive resource for nematode research. Nucleic Acids Research, 38, D463–467.

    PubMed  CAS  Google Scholar 

  151. Prlic, A., Down, T. A., Kulesha, E., Finn, R. D., Kahari, A., & Hubbard, T. J. (2007). Integrating sequence and structural biology with DAS. BMC Bioinformatics, 8, 333.

    PubMed  Google Scholar 

  152. Sanger, F., & Tuppy, H. (1951). The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. The Biochemical Journal, 49(4), 481–490.

    PubMed  CAS  Google Scholar 

  153. Sanger, F., & Tuppy, H. (1951). The amino-acid sequence in the phenylalanyl chain of insulin I. The identification of lower peptides from partial hydrolysates. The Biochemical Journal, 49(4), 463–481.

    PubMed  CAS  Google Scholar 

  154. Consortium TU. (2007). The Universal Protein Resource (UniProt). Nucleic Acids Research, 35, D193–197.

    Google Scholar 

  155. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.

    PubMed  CAS  Google Scholar 

  156. Laskowski, R. A., & Thornton, J. M. (2008). Understanding the molecular machinery of genetics through 3D structures. Nature Reviews. Genetics, 9(2), 141–151.

    PubMed  CAS  Google Scholar 

  157. Sali, A., & Blundell, T. L. (1990). Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. Journal of Molecular Biology, 212(2), 403–428.

    PubMed  CAS  Google Scholar 

  158. Sali, A., Overington, J. P., Johnson, M. S., & Blundell, T. L. (1990). From comparisons of protein sequences and structures to protein modelling and design. Trends in Biochemical Sciences, 15(6), 235–240.

    PubMed  CAS  Google Scholar 

  159. Moult, J. (2005). A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structural Biology, 15(3), 285–289.

    PubMed  CAS  Google Scholar 

  160. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    PubMed  CAS  Google Scholar 

  161. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.

    PubMed  CAS  Google Scholar 

  162. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., et al. (2008). The Pfam protein families database. Nucleic Acids Research, 36, D281–288.

    PubMed  CAS  Google Scholar 

  163. Rost, B. (1995). TOPITS: Threading one-dimensional predictions into three-dimensional structures. Proc Int Conf Intell Syst Mol Biol, 3, 314–321.

    PubMed  CAS  Google Scholar 

  164. Shi, J., Blundell, T. L., & Mizuguchi, K. (2001). FUGUE: Sequence–structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. Journal of Molecular Biology, 310(1), 243–257.

    PubMed  CAS  Google Scholar 

  165. Furnham, N., de Bakker, P. I., Gore, S., Burke, D. F., & Blundell, T. L. (2008). Comparative modelling by restraint-based conformational sampling. BMC Structural Biology, 8(1), 7.

    PubMed  Google Scholar 

  166. Gore, S. P., Karmali, A. M., & Blundell, T. L. (2007). Rappertk: A versatile engine for discrete restraint-based conformational sampling of macromolecules. BMC Structural Biology, 7, 13.

    PubMed  Google Scholar 

  167. Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815.

    PubMed  CAS  Google Scholar 

  168. Bates, P. A., Kelley, L. A., MacCallum, R. M., & Sternberg, M. J. (2001). Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins Suppl, 5, 39–46.

    Google Scholar 

  169. Montalvao, R. W., Smith, R. E., Lovell, S. C., & Blundell, T. L. (2005). CHORAL: A differential geometry approach to the prediction of the cores of protein structures. Bioinformatics, 21(19), 3719–3725.

    PubMed  CAS  Google Scholar 

  170. Peitsch, M. C., Wilkins, M. R., Tonella, L., Sanchez, J. C., Appel, R. D., & Hochstrasser, D. F. (1997). Large-scale protein modelling and integration with the SWISS-PROT and SWISS-2DPAGE databases: The example of Escherichia coli. Electrophoresis, 18(3–4), 498–501.

    PubMed  CAS  Google Scholar 

  171. Sutcliffe, M. J., Hayes, F. R., & Blundell, T. L. (1987). Knowledge based modelling of homologous proteins, part II: Rules for the conformations of substituted sidechains. Protein Engineering, 1(5), 385–392.

    PubMed  CAS  Google Scholar 

  172. Lovell, S. C., Davis, I. W., Arendall, W. B., 3rd, de Bakker, P. I., Word, J. M., Prisant, M. G., et al. (2003). Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins, 50(3), 437–450.

    PubMed  CAS  Google Scholar 

  173. Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362.

    PubMed  CAS  Google Scholar 

  174. Bradley, P., Misura, K. M., & Baker, D. (2005). Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742), 1868–1871.

    PubMed  CAS  Google Scholar 

  175. Alimonti, A., Carracedo, A., Clohessy, J. G., Trotman, L. C., Nardella, C., Egia, A., et al. (2010). Subtle variations in Pten dose determine cancer susceptibility. Nature Genetics, 42(5), 454–458.

    PubMed  CAS  Google Scholar 

  176. Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., et al. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9362–9367.

    PubMed  CAS  Google Scholar 

  177. Chamary, J. V., Parmley, J. L., & Hurst, L. D. (2006). Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nature Rev Genet, 7, 98–108.

    PubMed  CAS  Google Scholar 

  178. Clark, T. G., Andrew, T., Cooper, G. M., Margulies, E. H., Mullikin, J. C., & Balding, D. J. (2007). Functional constraint and small insertions and deletions in the ENCODE regions of the human genome. Genome Biology, 8(9), R180.

    PubMed  Google Scholar 

  179. Mills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsui, C., Pittard, W. S., et al. (2006). An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Research, 16(9), 1182–1190.

    PubMed  CAS  Google Scholar 

  180. Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454.

    PubMed  CAS  Google Scholar 

  181. Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.

    PubMed  CAS  Google Scholar 

  182. Sudmant, P. H., Kitzman, J. O., Antonacci, F., Alkan, C., Malig, M., Tsalenko, A., et al. (2010). Diversity of human copy number variation and multicopy genes. Science, 330(6004), 641–646.

    PubMed  CAS  Google Scholar 

  183. Gemayel, R., Vinces, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annual Review of Genetics, 44, 445–477.

    PubMed  CAS  Google Scholar 

  184. McCarroll, S. A. (2010). Copy number variation and human genome maps. Nature Genetics, 42(5), 365–366.

    PubMed  CAS  Google Scholar 

  185. Mullaney, J. M., Mills, R. E., Pittard, W. S., & Devine, S. E. (2010). Small insertions and deletions (INDELs) in human genomes. Human Molecular Genetics, 19(2), R131–136.

    PubMed  CAS  Google Scholar 

  186. Soskine, M., & Tawfik, D. S. (2010). Mutational effects and the evolution of new protein functions. Nature Reviews. Genetics, 11(8), 572–582.

    PubMed  CAS  Google Scholar 

  187. Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human genome and its role in disease. Annual Review of Medicine, 61, 437–455.

    PubMed  CAS  Google Scholar 

  188. Wain, L. V., Armour, J. A., & Tobin, M. D. (2009). Genomic copy number variation, human health, and disease. Lancet, 374(9686), 340–350.

    PubMed  CAS  Google Scholar 

  189. Goldberg, A. L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426(6968), 895–899.

    PubMed  CAS  Google Scholar 

  190. Ferrer-Costa, C., Orozco, M., & de la Cruz, X. (2007). Characterization of compensated mutations in terms of structural and physico-chemical properties. Journal of Molecular Biology, 365(1), 249–256.

    PubMed  CAS  Google Scholar 

  191. Marguerat, S., Wilhelm, B. T., & Bahler, J. (2008). Next-generation sequencing: Applications beyond genomes. Biochemical Society Transactions, 36(Pt 5), 1091–1096.

    PubMed  CAS  Google Scholar 

  192. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews. Genetics, 10(1), 57–63.

    PubMed  CAS  Google Scholar 

  193. Brookes, A. J., Lehvaslaiho, H., Siegfried, M., Boehm, J. G., Yuan, Y. P., Sarkar, C. M., et al. (2000). HGBASE: A database of SNPs and other variations in and around human genes. Nucleic Acids Research, 28(1), 356–360.

    PubMed  CAS  Google Scholar 

  194. Fredman, D., Siegfried, M., Yuan, Y. P., Bork, P., Lehvaslaiho, H., & Brookes, A. J. (2002). HGVbase: A human sequence variation database emphasizing data quality and a broad spectrum of data sources. Nucleic Acids Research, 30(1), 387–391.

    PubMed  CAS  Google Scholar 

  195. Gromiha, M. M., An, J., Kono, H., Oobatake, M., Uedaira, H., & Sarai, A. (1999). ProTherm: Thermodynamic Database for Proteins and Mutants. Nucleic Acids Research, 27(1), 286–288.

    PubMed  CAS  Google Scholar 

  196. Thorn, K. S., & Bogan, A. A. (2001). ASEdb: A database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics, 17(3), 284–285.

    PubMed  CAS  Google Scholar 

  197. Martin, A. C., Facchiano, A. M., Cuff, A. L., Hernandez-Boussard, T., Olivier, M., Hainaut, P., et al. (2002). Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Human Mutation, 19(2), 149–164.

    PubMed  CAS  Google Scholar 

  198. Kwok, C. J., Martin, A. C., Au, S. W., & Lam, V. M. (2002). G6PDdb, an integrated database of glucose-6-phosphate dehydrogenase (G6PD) mutations. Human Mutation, 19(3), 217–224.

    PubMed  CAS  Google Scholar 

  199. Mooney, S. D., & Altman, R. B. (2003). MutDB: Annotating human variation with functionally relevant data. Bioinformatics, 19(14), 1858–1860.

    PubMed  CAS  Google Scholar 

  200. Riva, A., & Kohane, I. S. (2002). SNPper: Retrieval and analysis of human SNPs. Bioinformatics, 18(12), 1681–1685.

    PubMed  CAS  Google Scholar 

  201. Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358.

    PubMed  CAS  Google Scholar 

  202. Stitziel, N. O., Binkowski, T. A., Tseng, Y. Y., Kasif, S., & Liang, J. (2004). topoSNP: A topographic database of non-synonymous single nucleotide polymorphisms with and without known disease association. Nucleic Acids Research, 32, D520–522.

    PubMed  CAS  Google Scholar 

  203. Karchin, R., Diekhans, M., Kelly, L., Thomas, D. J., Pieper, U., Eswar, N., et al. (2005). LS-SNP: Large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics, 21(12), 2814–2820.

    PubMed  CAS  Google Scholar 

  204. Hurst, J. M., McMillan, L. E., Porter, C. T., Allen, J., Fakorede, A., & Martin, A. C. (2009). The SAAPdb web resource: A large-scale structural analysis of mutant proteins. Human Mutation, 30(4), 616–624.

    PubMed  CAS  Google Scholar 

  205. Reumers, J., Maurer-Stroh, S., Schymkowitz, J., & Rousseau, F. (2006). SNPeffect v2.0: A new step in investigating the molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics, 22(17), 2183–2185.

    PubMed  CAS  Google Scholar 

  206. Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., Serrano, L., & Rousseau, F. (2005). SNPeffect: A database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Research, 33, D527–532.

    PubMed  CAS  Google Scholar 

  207. Han, A., Kang, H. J., Cho, Y., Lee, S., Kim, Y. J., & Gong, S. (2006). SNP@Domain: A web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences. Nucleic Acids Research, 34, W642–644.

    PubMed  CAS  Google Scholar 

  208. Jegga, A. G., Gowrisankar, S., Chen, J., & Aronow, B. J. (2007). PolyDoms: A whole genome database for the identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic Acids Research, 35, D700–706.

    PubMed  CAS  Google Scholar 

  209. Peterson, T. A., Adadey, A., Santana-Cruz, I., Sun, Y., Winder, A., & Kann, M. G. (2010). DMDM: Domain mapping of disease mutations. Bioinformatics, 26(19), 2458–2459.

    PubMed  CAS  Google Scholar 

  210. Craddock, N., Hurles, M. E., Cardin, N., Pearson, R. D., Plagnol, V., Robson, S., et al. (2010). Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 464(7289), 713–720.

    PubMed  CAS  Google Scholar 

  211. Topham, C. M., McLeod, A., Eisenmenger, F., Overington, J. P., Johnson, M. S., & Blundell, T. L. (1993). Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. Journal of Molecular Biology, 229(1), 194–220.

    PubMed  CAS  Google Scholar 

  212. Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., & Rooman, M. (2009). Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics, 25, 2537–2543.

    PubMed  CAS  Google Scholar 

  213. Gilis, D., & Rooman, M. (2000). PoPMuSiC, an algorithm for predicting protein mutant stability changes: Application to prion proteins. Protein Engineering, 13(12), 849–856.

    PubMed  CAS  Google Scholar 

  214. Zhou, H., & Zhou, Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science, 11(11), 2714–2726.

    PubMed  CAS  Google Scholar 

  215. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33, W382–388.

    PubMed  CAS  Google Scholar 

  216. Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: Server and survey. Nucleic Acids Research, 30(17), 3894–3900.

    PubMed  CAS  Google Scholar 

  217. Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., et al. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26(16), 1719–1751.

    PubMed  CAS  Google Scholar 

  218. Ferrer-Costa, C., Gelpi, J. L., Zamakola, L., Parraga, I., de la Cruz, X., & Orozco, M. (2005). PMUT: A web-based tool for the annotation of pathological mutations on proteins. Bioinformatics, 21(14), 3176–3178.

    PubMed  CAS  Google Scholar 

  219. Yuan, H. Y., Chiou, J. J., Tseng, W. H., Liu, C. H., Liu, C. K., Lin, Y. J., et al. (2006). FASTSNP: An always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Research, 34, W635–641.

    PubMed  CAS  Google Scholar 

  220. Yue, P., Melamud, E., & Moult, J. (2006). SNPs3D: Candidate gene and SNP selection for association studies. BMC Bioinformatics, 7, 166.

    PubMed  Google Scholar 

  221. Yin, S., Ding, F., & Dokholyan, N. V. (2007). Eris: An automated estimator of protein stability. Nat Methods, 4(6), 466–467.

    PubMed  CAS  Google Scholar 

  222. Ye, Z. Q., Zhao, S. Q., Gao, G., Liu, X. Q., Langlois, R. E., Lu, H., et al. (2007). Finding new structural and sequence attributes to predict possible disease association of single amino acid polymorphism (SAP). Bioinformatics, 23(12), 1444–1450.

    PubMed  CAS  Google Scholar 

  223. Uzun, A., Leslin, C. M., Abyzov, A., & Ilyin, V. (2007). Structure SNP (StSNP): A web server for mapping and modeling nsSNPs on protein structures with linkage to metabolic pathways. Nucleic Acids Research, 35, W384–392.

    PubMed  Google Scholar 

  224. Li, S., Ma, L., Li, H., Vang, S., Hu, Y., Bolund, L., et al. (2007). Snap: An integrated SNP annotation platform. Nucleic Acids Research, 35, D707–710.

    PubMed  CAS  Google Scholar 

  225. Masso, M., & Vaisman, I. I. (2010). AUTO-MUTE: Web-based tools for predicting stability changes in proteins due to single amino acid replacements. Protein Engineering, Design & Selection, 23(8), 683–687.

    CAS  Google Scholar 

  226. Capriotti, E., Arbiza, L., Casadio, R., Dopazo, J., Dopazo, H., & Marti-Renom, M. A. (2008). Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans. Human Mutation, 29(1), 198–204.

    PubMed  Google Scholar 

  227. Lee, P. H., & Shatkay, H. (2008). F-SNP: Computationally predicted functional SNPs for disease association studies. Nucleic Acids Research, 36, D820–824.

    PubMed  CAS  Google Scholar 

  228. Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614.

    PubMed  CAS  Google Scholar 

  229. Kotowski, I. K., Pertsemlidis, A., Luke, A., Cooper, R. S., Vega, G. L., Cohen, J. C., et al. (2006). A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. American Journal of Human Genetics, 78(3), 410–422.

    PubMed  CAS  Google Scholar 

  230. Allard, D., Amsellem, S., Abifadel, M., Trillard, M., Devillers, M., Luc, G., et al. (2005). Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Human Mutation, 26(5), 497.

    PubMed  Google Scholar 

  231. Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247(4), 536–540.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to all who are developing and maintaining biological databases, scientists submitting their invaluable data and people who support open-source programmes and operating systems. SG, CLW and TC want to thank the Blundell Group members for their support and collaborations during their stay in Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsam Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, S., Worth, C.L., Cheng, T.M.K. et al. Meet Me Halfway: When Genomics Meets Structural Bioinformatics. J. of Cardiovasc. Trans. Res. 4, 281–303 (2011). https://doi.org/10.1007/s12265-011-9259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9259-1

Keywords

Navigation