Skip to main content

Applications of Arbuscular Mycorrhizal Fungi in Controlling Root-Knot Nematodes

  • Chapter
  • First Online:
Arbuscular Mycorrhizal Fungi and Higher Plants

Abstract

Meloidogyne nematodes cause diseases in economically important plants. These sedentary endoparasites modify plant roots, creating feeding sites and leading to the formation of root galls. Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with many plants, enhancing nutrient uptake and overall plant health. AMF can also provide protection against pathogens, making them valuable for biocontrol. Studies have shown that AMF can reduce the number of Meloidogyne galls and eggs while improving plant growth and nutrient absorption, potentially outperforming chemical pesticides. AMF affect Meloidogyne infection at various stages, such as making roots less attractive to nematodes and reducing giant cell formation in galls. There is an increase in the production of protective molecules, compounds, and defense genes in mycorrhizal plants infected by Meloidogyne, standing out phenolic compounds and defense enzymes like peroxidase and polyphenol oxidase. The activation of defense genes and pathways is suggested to play a role in the tolerance of mycorrhizal plants to Meloidogyne. However, there is still a need for further research to understand the physiological and genetic modifications that occur in plants infected by Meloidogyne and associated with AMF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abo-Korah MS (2022) Effectiveness of certain safety commercial nematicides compare with a chemical nematicide Carbofuran for controlling M. incognita infected pomegranate plants. Int J Sci Res Sustain Dev 5:1–12

    Google Scholar 

  • Ahamad L, Bhat AH, Kumar H, Rana A, Hasan MN, Ahmed I, Ahmed S, Machado RAR, Ameen F (2023) From soil to plant: strengthening carrot defenses against Meloidogyne incognita with vermicompost and arbuscular mycorrhizal fungi biofertilizers. Front Microbiol 14:1206217

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar MS, Panwar J (2012) Efficacy of root-associated fungi and PGPR on the growth of Pisum sativum (cv. Arkil) and reproduction of the root-knot nematode Meloidogyne incognita. J Basic Microbiol 52:1–9

    Google Scholar 

  • Alamri S, Nafady NA, El-Sagheer AM, El-Aal MA, Mostafa YS, Hashem M, Hassan EA (2022) Current utility of arbuscular mycorrhizal fungi and hydroxyapatite nanoparticles in suppression of tomato root-knot nematode. Agronomy 12:1–16

    Article  Google Scholar 

  • Aljuboori FK, Ibrahim BY, Mohamed AH (2022) Biological control of the complex disease of Rhizoctonia solani and root-knot nematode Meloidogyne javanica on chickpea by Glomus spp. and Pseudonomas sp. Iraqi J Agric Sci 53:669–676

    Article  Google Scholar 

  • Amanifar S, Khodabandeloo M, Fard EM, Askari MS, Ashrafi M (2019) Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress. Environ Exp Bot 160:25–34

    Article  CAS  Google Scholar 

  • Balestrini R, Rosso LC, Veronico P, Melillo MT, de Luca F, Fanelli E, Colagiero M, Fossalunga AS, Ciancio A, Pentimone I (2019) Transcriptomic responses to water déficit and nematode infection in mycorrhizal tomato roots. Front Microbiol 10:1–17

    Article  Google Scholar 

  • Banuelos J, Alarcon A, Larsen J, Cruz-Sanchez S, Trejo D (2014) Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. J Soil Sci Plant Nutr 14:63–74

    Google Scholar 

  • Campos MAS (2020) Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: a sustainable alternative. Crop Prot 135:105203

    Article  Google Scholar 

  • Coninx L, Martinova V, Rineau F (2017) Mycorrhiza-assisted phytoremediation. In: Cuypers A, Vangronsveld J (eds) Advances in botanical research, 1st edn. Elsevier, pp 127–188

    Google Scholar 

  • Curtis RHC, Robinson AF, Perry RN (2009) Hatch and host location. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 139–162

    Chapter  Google Scholar 

  • El-Shafeey EI, Abd-El-Hadi MA, Hagag ES, Abu El-Naga GS (2019) Utilization of organic and bio fertilizers against root-knot nematode (Meloidogyne incognita) infecting faba bean (Vicia faba L.). Bulg J Agric Sci 25:506–513

    Google Scholar 

  • Giri B, Rawat R, Saxena G, Manchanda P, Wu KS, Sharma A (2022) Effect of Rhizoglomus fasciculatum and Paecilomyces lilacinus in the biocontrol of root-knot nematode, Meloidogyne incognita in Capsicum annuum L. Commun Integr Biol 15:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Saikia SK, Pandey R (2017) Bioconsortia augments antioxidant and yield in Matricaria recutia L. against Meloidogyne incognita (Kofoid and White) Chitwood infestation. Proc Natl Acad Sci India 87:335–342

    Google Scholar 

  • Hajra N, Shahina F, Firoza K, Maria R (2015) Damage induced by root-knot nematodes and its alleviation by vesicular arbuscular mycorrhizal fungi in roots of Luffa cylindrica. Pak J Nematol 33:71–78

    Google Scholar 

  • Herrera-Parra E, Ramos-Zapata J, Basto-Pool C, Cristóbal-Alejo J (2021) Sweet pepper (Capsicum annuum) response to the inoculation of native arbuscular mycorrhizal fungi and the parasitism of root-knot Meloidogyne incognita. Rev Biocienc 8:e982

    Google Scholar 

  • Ismaiel G, Abdelaziz S (2019) Effect of arbuscular mycorrhizal fungi and some plant growth promoting rhizobacteria in controlling root-knot nematode (Meloidogyne incognita) on tomato under greenhouse conditions. Desert Res Center 69:131–150

    Google Scholar 

  • Khalid H, Aminuzzaman FM, Amit K, Faria AA, Mitu AI, Chowdhury MSM, Shammi J, Khan MA (2021) Evaluation of the combined application of Purpureocillium lilacinum PLSAU-1 and Glomus sp. against Meloidogyne incognita: implications for arsenic phytotoxicity on eggplant. Eur J Plant Pathol 159:139–152

    Article  CAS  Google Scholar 

  • Kolawole GO, Haastrup TM, Olabiyi TI (2018) Can arbuscular mycorrhiza fungi and NPK fertilizer suppress nematodes and improve tuber yield of yam (Dioscorea rotundata ‘cv’ ewuru)? Eurasian J Soil Sci 7:181–186

    Google Scholar 

  • Li H-Y, Yang G-D, Shu H-R, Yang Y-T, Ye B-X, Nishida I, Zheng C-C (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Malviya D, Singh P, Singh UB, Paul S, Bisen PK, Rai JP, Verma RL, Fiyaz RA, Kumar A, Kumari P, Dei S, Ahmed MR, Bagyaraj DJ, Singh HV (2023) Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice (Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol 14:1104490

    Article  PubMed  PubMed Central  Google Scholar 

  • Messa VR, Costa ACT, Kuhn OJ, Stroze CT (2020) Nematophagous and endomycorrhizal fungi in the control of Meloidogyne incognita in soybean. Rizhosphere 15:100222

    Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Odeyemi IS, Afolami SO, Adekoyejo AB (2013) Integration of Glomus mosseae with Chromolaena odorata powder for suppression of Meloidogyne incognita on maize (Zea mays L.). Arch Phytopathol Plant Protect 46:1589–1597

    Article  Google Scholar 

  • Perry RN, Wright DJ (1998) The Physiology and Biochemistry of free-living and plant-parasitic nematodes. CABI Publishing, London

    Book  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Püschel D, Bitterlich M, Rydlová J, Jansa J (2021) Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol Biochem 157:108243

    Article  Google Scholar 

  • Rodriguez-Heredia M, Djian-Caporalino C, Ponchet M, Lapeyre L, Canaguier R, Fazari A, Marteu N, Industri B, Offroychave M (2020) Protective effects of mycorrhizal association in tomato and pepper against Meloidogyne incognita infection, and mycorrhizal networks for early mycorrhization of low mycotrophic plants. Phytopathol Mediterr 59(2):377–384

    Google Scholar 

  • Sá CSB, Campos MAS (2020) Arbuscular mycorrhizal fungi decrease Meloidogyne enterolobii infection of Guava seedlings. J Helminthol 94:1–5

    Google Scholar 

  • Saad AFSA, Massoud MA, Ibrahim HS, Khalil MS (2012) Activity of Nemathorin, natural product and bioproducts against root-knot nematodes on tomato. Arch Phytopathol Plant Protect 45:955–962

    Article  CAS  Google Scholar 

  • Sasanelli N, Anton A, Takacs T, D’Addabbo TD, Biro I, Malov X (2009) Influence of arbuscular mycorrhizal fungi on the nematicidal properties of leaf extracts of Thymus vulgaris L. Helminthologia 46:230–240

    Article  Google Scholar 

  • Sery DJM, Kouadjo ZGC, Voko BRR, Zeze A (2016) Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Front Microbiol 7:1–13

    Article  Google Scholar 

  • Sharma IP, Sharma AK (2017a) Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of micorrhiza and PGPR against root-knot nematode. Symbiosis 71:175–182

    Article  CAS  Google Scholar 

  • Sharma IP, Sharma AK (2017b) Co-inoculation of tomato with an arbuscular mycorrhizal fungus improves plant immunity and reduces root-knot nematode infection. Rhizosphere 4:25–28

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1998) Effect of plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl Soil Ecol 8:77–84

    Article  Google Scholar 

  • Silva MA, Cavalcante UMT, Silva FSB, Soares SAG, Maia LC (2004) Crescimento de mudas de maracujazeiro-doce (Passiflora alata Curtis) associadas a fungos micorrízicos arbusculares (Glomeromycota). Acta Bot Bras 18:981–985

    Article  Google Scholar 

  • Silva BA, Cruz RMS, Miamote A, Alberton O, Silva C, Dias-Arieira CR (2021) Interaction between mycorrhizal fungi and ‘Meloidogyne javanica’ on the growth and essential oil composition of basil (‘Ocimum basilicum’). Aust J Crop Sci 15:416–421

    Article  Google Scholar 

  • Silva MTR, Silva BA, Alberton O, Schwengber RP, Dias-Arireira CR (2022) Rhizophagus clarus controls Meloidogyne javanica and enhances the activity of defense-related enzymes in tomato. Hortic Bras 40:162–167

    Article  CAS  Google Scholar 

  • Sohrabi F, Sheikholeslami M, Heydari R, Rezaee S, Sharifi R (2020) Investigating the effect of Glomus mosseae, Bacillus subtilis and Trichoderma harzianum on plant growth and controlling Meloidogyne javanica in tomato. Indian Phytopathol 73:293–300. https://doi.org/10.1007/s42360-020-00227-w

    Article  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Koljalg U, Bahram M, Doring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  • Tiwari S, Pandey S, Chauhan PS, Pandey R (2017) Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne icognita (Kofoid and White) Chitwood] and enhances essential oil content in Ocimum brasilicum L. Ind Crop Prod 97:292–301

    Article  Google Scholar 

  • Udo IA, Uko AE, Obok EE, Ubi JO, Umoetok SBA (2022) Management of Meloidogyne incognita and salinity on sweet pepper (Capsicum annuum L.) with different arbuscular mycorrhizal fungus species. J Appl Biol Biotechnol 10(4):66–72

    Article  CAS  Google Scholar 

  • Vallejos-Torres G, Espinoza E, Marín-Díaz J, Solis R, Arévalo LA (2020) The role of arbuscular mycorrhizal fungi against root-knot nematode infections in coffee plants. J Soil Sci Plant Nutr 21:364–373. https://doi.org/10.1007/s42729-020-00366-z

    Article  CAS  Google Scholar 

  • Vos C, Geerinckx K, Mkandawire R, Panis B, De Waele D, Elsen A (2012a) Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza 22:157–163

    Article  PubMed  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A (2012b) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  CAS  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D, Chatagnier O, Elsen A, de Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-Knot nematode Meloidogyne incógnita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryluce Albuquerque da Silva Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva Campos, M.A. (2024). Applications of Arbuscular Mycorrhizal Fungi in Controlling Root-Knot Nematodes. In: Ahammed, G.J., Hajiboland, R. (eds) Arbuscular Mycorrhizal Fungi and Higher Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-8220-2_10

Download citation

Publish with us

Policies and ethics