Skip to main content

An Upliftment Strategy for Little Millet Improvement by Unravelling the Hidden Molecular Network Behind Its Miracle Properties

  • Chapter
  • First Online:
Genetic improvement of Small Millets
  • 65 Accesses

Abstract

Nature has provided us with plenty of plant species which serve as the reservoir of highly essential nutrients. The dietary benefits of small millets have been forcefully forgotten by the dominance of major cereals. Nowadays, such orphan cereals are again blooming since people have begun realizing the importance of nutraceutical and its beneficial health properties. Each of the small millets has its own unique nutritional benefits and climate-resilient properties. Little millet is one among them. Little millet, a nutricereal, is known for its unique nutritional traits because of the presence of GABA, carotenoids, tocopherols and phenolic compounds. Besides this, little millet is fairly rich in Fe and Ca. It also has antidiabetic and antioxidant properties. Phenotypically, little millet has good drought tolerance ability with wider adaptability. Little is known about the crop and subjecting the crop to crop improvement programme needs more understanding of the crop. Hence, the genetic and molecular basis of its adaptation traits and nature of climate resilience need to be explored further to utilise the maximum potential of this crop. It is also imperative to utilise the advanced biotechnological tools available to make crop improvement programmes smart and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth under drought stress. Cell Biochem Biophys 68(3):587–595

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Choi YM, Hyun DY, Lee S, Kim JH, Oh S, Lee MC (2017) Development of EST-SSRs and assessment of genetic diversity in little millet (Panicum sumatrense) germplasm. Korean J Plant Resour 30(3):287–297

    Google Scholar 

  • Amadou I, Gounga ME, Le GW (2013) Millets: nutritional composition, some health benefits and processing—a review. Emirates J Food Agric 25:501–508

    Article  Google Scholar 

  • Aparna K, Nepolean T, Srivastsava RK et al (2015) Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br]. Plant Biol (Stuttg) 17:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Arunachalam V, Rengalakshmi R, Raj K (2005) Ecological stability of genetic diversity among landraces of little millet (Panicum sumatrense) in south India. Genet Resour Crop Evol 52(1):15–19

    Article  Google Scholar 

  • Bhaskaran J, Panneerselvam R (2013) Accelerated reactive oxygen scavenging system and membrane integrity of two Panicum species varying in salt tolerance. Cell Biochem Biophys 67(3):885–892

    Article  CAS  PubMed  Google Scholar 

  • Chandel G, Dubey M, Gupta S, Patil AH, Rao AR (2017) Identification and characterization of a grain micronutrient-related OsFRO2 rice gene ortholog from micronutrient-rich little millet (Panicum sumatrense). 3 Biotech 7(1):1–9

    Article  Google Scholar 

  • Chandel G, Meen AR, Dubey M, Kumari M (2014) Nutritionalproperties of minor millets: neglected cereals with potentials tocombat malnutrition. Curr Sci 107(7):1109–1111

    Google Scholar 

  • Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA, Larkins BA (1997) Expression of a mutant α-zein creates the floury 2 phenotype in transgenic maize. Proc Natl Acad Sci 94(13):7094–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colinas M, Fitzpatrick TB (2015) Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. Curr Opin Plant Biol 25:98–106

    Article  CAS  PubMed  Google Scholar 

  • Desai H, Hamid R, Ghorbanzadeh Z, Bhut N, Padhiyar SM, Kheni J, Tomar RS (2021) Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci Rep 11(1):1–14

    Article  Google Scholar 

  • Dhawale RN et al (2022) Metabolomic profiling of drought-tolerant little millet (Panicum sumatrense L.) genotype in response to drought stress. Pharm Innov 11:1754

    CAS  Google Scholar 

  • Divya S, Geetha K, Parasuraman P (2021) Little millet-a dryland drought tolerant millet crop

    Google Scholar 

  • Ganapathy KN (2017) Genetic improvement in little millet. In: Millets and sorghum: biology and genetic improvement. Wiley Blackwell, pp 170–183

    Chapter  Google Scholar 

  • Gimode D, Odeny DA, de Villiers EP et al (2016) Identification of SNP and SSR markers in finger millet using next generation sequencing technologies. PLoS One 11:e0159437

    Article  PubMed  PubMed Central  Google Scholar 

  • Guha M, Sreerama YN, Malleshi NG (2015) Influence of processing on nutraceuticals of little millet (Panicum sumatrense). In: Processing and impact on active components in food. Academic Press, pp 353–360

    Chapter  Google Scholar 

  • Guo X, Sha X, Rahman E, Wang Y, Ji B, Wu W, Zhou F (2018) Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols. J Food Sci Technol 55(3):1010–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kumari M, Kumar H, Varadwaj PK (2017) Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency. Funct Integr Genomics 17(2):335–351

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Mbacke B, Perumal R et al (2015) Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16:1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H, Zhu C (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45(8):957–961

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Deshpande S, Vetriventhan M, Upadhyaya HD, Wallace JG (2019) Genome-wide population structure analyses of three minor millets: kodo millet, little millet, and proso millet. Plant Genome 12(3):190021

    Article  CAS  Google Scholar 

  • Kehr J (2013) Systemic regulation of mineral homeostasis by micro RNAs. Front Plant Sci 4:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Park SY, Yeo Y, Cho HS, Kim YB, Bae H, Park CH, Lee JH, Park SU (2013) Metabolic profiling of millet (Paniciim miliaceum) using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) for quality assessment. Plant Omics 6(1):73–78

    CAS  Google Scholar 

  • Kumar A, Sharma D, Tiwari A, Jaiswal JP, Singh NK, Sood S (2016) Genotyping-by-sequencing analysis for determining population structure of finger millet germplasm of diverse origins. Plant Genome 9:1–15

    Article  Google Scholar 

  • Kushwaha A, Singh A, Sirohi R, Tarafdar A (2019) Effect of hydrothermal treatment and milling parameters on milling and nutritional qualities of finger millet (Eleusine coracana). J Agric Eng 55(4):34–46

    Google Scholar 

  • Ma X, Feng F, Wei H, Mei H, Xu K, Chen S et al (2016) Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01801

  • Manimozhi Selvi V, Nirmalakumari A, Senthil N (2015) Genetic diversity for zinc, calcium and iron content of selected little millet genotypes. J Nutr Food Sci 5(417):2

    Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD et al (2012) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan NN, Vasconcelos MW, Grusak MA (2007) Expressionprofiling of Oryza sativa metal homeostasis genes in differentrice cultivars using a cDNA macroarray. Plant Physiol Biochem 45(5):277–286

    Article  CAS  PubMed  Google Scholar 

  • Ofosu FK, Elahi F, Daliri EBM, Chelliah R, Ham HJ, Kim JH, Han SI, Hur JH, Oh DH (2020) Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants 9(3):254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Li Z, Wang Q, Garrell AK, Liu M, Guan Y, Zhou W, Liu W (2018) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol 18(1):1–19

    Article  CAS  Google Scholar 

  • Paschapur AU, Joshi D, Mishra KK, Kant L, Kumar V, Kumar A (2021) Millets for life: a brief introduction. In: Millets and millet technology. Springer, Singapore, pp 1–32

    Google Scholar 

  • Patil KB, Chimmad BV, Itagi S (2015) Glycemic index and quality evaluation of little millet (Panicum miliare) flakes with enhanced shelf life. J Food Sci Technol 52(9):6078–6082

    Article  CAS  PubMed  Google Scholar 

  • Pradeep SR, Guha M (2011) Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem 126(4):1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16(1):7–20

    Google Scholar 

  • Rai KN, Gowda CLL, Reddy BVS, Sehgal S (2008) Adaptation and potential uses of sorghum and pearl millet in alternative and health foods. Compr Rev Food Sci Food Saf 7(4):320–396

    Google Scholar 

  • Singh RK, Prasad M (2017) Genome-wide association studies for improving agronomic traits in foxtail millet. In: The foxtail millet genome. Springer, Cham, pp 63–75

    Chapter  Google Scholar 

  • Singh RK, Muthamilarasan M, Prasad M (2021) Biotechnological approaches to dissect climate-resilient traits in millets and their application in crop improvement. J Biotechnol 327:64–73

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar S, Franco OL, Thayumanavan B, Murad AM, Manickam A, Mohan M, Mridula M (2006) Cloning and structural analysis of an Indian little millet (Panicum sumatrense) zein-like storage protein: implications for molecular assembly. Biochemistry (Moscow) 71(11):1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Sood P, Singh RK, Prasad M (2019) Millets genetic engineering: the progress made and prospects for the future. Plant Cell Tissue Organ Cult 137(3):421–439

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477

    Article  CAS  PubMed  Google Scholar 

  • Tharanya M, Kholova J, Sivasakthi K, Seghal D, Hash CT, Raj B, Srivastava RK, Baddam R, Thirunalasundari T, Yadav R, Vadez V (2018) Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum LR Br.). Theor Appl Genet 131(7):1509–1529

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Vetriventhan M, Deshpande SP, Sivasubramani S, Wallace JG, Buckler ES, Hash CT, Ramu P (2015) Population genetics and structure of a global foxtail millet germplasm collection. Plant Genome 8:1–13

    Article  CAS  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175(5):631–641

    Article  CAS  Google Scholar 

  • Xiang J, Apea-Bah FB, Ndolo VU, Katundu MC, Beta T (2019) Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem 275:361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu T, Fu J et al (2007) Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics 90:121–131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Indhu, S.M., Francis, N., Mohana Priya, B., John Joel, A. (2024). An Upliftment Strategy for Little Millet Improvement by Unravelling the Hidden Molecular Network Behind Its Miracle Properties. In: Mishra, S., Kumar, S., Srivastava, R.C. (eds) Genetic improvement of Small Millets. Springer, Singapore. https://doi.org/10.1007/978-981-99-7232-6_29

Download citation

Publish with us

Policies and ethics