Skip to main content

High-Resolution Molecular Secondary Ion Mass Spectrometry for Absolute Quantification of Materials in Low-Dimensional Structures: Foundation, Perception and Challenges

  • Chapter
  • First Online:
Handbook of Materials Science, Volume 1

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 400 Accesses

Abstract

Material surfaces have unique structures and compositions that are strikingly different from the material itself. Atoms on the surface of a crystal are in an anisotropic condition markedly different from the situation experienced by the atoms in a bulk. The symmetry experienced by the individual surface atoms breaks down because of the fact that atoms at the surfaces are under-coordinated. The surface atoms have more energy compared to bulk atoms because the breaking of bonds occurs at the expense of energy. A surface as a natural interface between a material and its surroundings acts as a major counterpart in the interactions between them. Therefore, detailed characterizations of a surface are indispensable. Since the surface occupies a microscopic portion of a material, highly dedicated and specialized techniques are required to examine the surface region. Since the nanostructures hold the major fractions of surface atoms, physical and chemical properties of surfaces have important parts in describing the properties of nanomaterials. As the surface analysis provides a means to correlate the performance with surface composition and structure, it is used not only for the development of new surfaces with high functionality but also for helping materials exhibit their function properly. Amongst all existing analytical methods, “Secondary Ion Mass Spectrometry (SIMS)” provides an exclusive place in quantitative analyses of material surfaces and interfaces. Continuous development in the fundamental and technological aspects of SIMS has made this technique to be extremely sensitive and powerful. Secondary ion emission results predominantly from the sputtering of materials under ion bombardment and is a complex inelastic process of ion-surface interactions. Amongst existing models for explaining ionization probabilities for sputtered species, “electron tunnelling mechanism” has so far proven to have maximum acceptability for all materials. Intensity of secondary ions is directly coupled with “ionization efficiency”, which strongly depends on instantaneous local surface chemistry. This is the so-called “Matrix Effect”, that makes the SIMS technique challenging for quantitative analysis of materials despite the fact that the technique has the highest detection sensitivity (<ppb) and exceptional depth resolution (<1 nm). Thus, the quantification badly requires the compensation of the matrix effect. If an alkali atom (Li, Rb, K, Na, Cs, …etc. (referred to as ‘A’) comes to the proximity of the probing element (M) residing on the sample surface, this alkali ion can attach to a sputtered neutral atom (M0) and form a quasi-molecular (MA)+ ion. Such a molecular ion formation is strongly correlated to the atomic polarizability of the element M. Since M0 emission is completely independent of MA+ ion formation, the ‘matrix effect’ drastically decreases; a process similar to the ion formation in “secondary neutral mass spectrometry (SNMS)”. Although these (MA)+ molecular ions are the potential for materials analysis without “calibration standards”, they generally suffer from low yields. In that case, the (MA2)+ molecular ions often meet the requirement as their yields have been found higher by orders of magnitude compared to (MA)+ ions, thus offering a better detection sensitivity. Molecular ions are often monitored in standard SIMS experiments, especially to detect those ion species, which have poor dynamic ranges or are affected by mass interferences. For example, whilst making SIMS analysis of GaAs samples using Cs+ primary ions, (CAs)+ molecular ions are routinely monitored instead of C ions in order to detect carbon as an impurity element, as carbon evolving from residual-gas species produces a high background in the mass spectra. Caesium is highly preferred for MCs+ or MCs2+ molecular ions in SIMS because of the strongest reactivity and electropositive nature of caesium. The present chapter deals with a comprehensive description of the ion emission phenomena in sputtering, the ‘matrix effect’ in SIMS and its compensation, and the potential applications of MCsn+-based molecular SIMS method for quantitative chemical analysis of materials. A special emphasis has been given to the quantification of low-dimensional materials, such as thin films, multilayers, superlattices, quantum structures, etc., using this advanced “MCsn+ -SIMS” (n = 1, 2, ….) approach in all complexities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi, S.: J. Appl. Phys. 53, 8775–8792 (1982)

    Article  CAS  Google Scholar 

  • Almeida, J.M., Boyle, G., Leite, A.P., De La Rue, R.M., lronside, C.N., Caccavale, F., Chakraborty, P., Mansour, I.: J. Appl. Phys. 78, 2193–2197 (1995)

    Google Scholar 

  • Andersen, C.A., Hinthorne, J.R.: Anal. Chem. 45, 1421–1438 (1973)

    Article  CAS  Google Scholar 

  • Baio, J.E., Graham, D.J., Castner, D.G.: Chem. Soc. Rev. 49, 3278–3296 (2020)

    Article  CAS  Google Scholar 

  • Bayan, S., Chakraborty, P.: Appl. Surf. Sci. 303, 233–240 (2014)

    Article  CAS  Google Scholar 

  • Bayan, S., Satpati, B., Chakraborty, P.: Surf. Interface Anal. 47, 37–44 (2014)

    Article  Google Scholar 

  • Bayan, S., Choudhury, B., Satpati, B., Chakraborty, P., Choudhury, A.: J. Appl. Phys. 117, 095304–095310 (2015)

    Article  Google Scholar 

  • Brison, J., Muramoto, S., Castner, D.G.: J. Phys. Chem. C 114, 5565–5573 (2010)

    Article  CAS  Google Scholar 

  • Brundle, C.R., Evans, C.A., Wilson, S.: In: Brundle, C.R., Evans, C.A., Wilson, S. (eds.) Encyclopaedia of Materials Characterization. Butterworth-Heinemann, MA, USA (1992)

    Google Scholar 

  • Caccavale, F., Chakraborty, P., Quaranta, A., Mansour, I., Gianello, G., Bosso, S., Corsini, R., Mussi, G.: J. Appl. Phys. 78, 5345–5350 (1995a)

    Article  CAS  Google Scholar 

  • Caccavale, F., Chakraborty, P., Capobianco, A., Gianelio, G., Mansour, I.: J. Appl. Phys. 78, 187–193 (1995b)

    Article  CAS  Google Scholar 

  • Canteri, R., Moro, L., Anderle, M.: In: Benninghoven, A. (ed.) Proceedings of SIMS VIII. Wiley, NY, USA (1991)

    Google Scholar 

  • Chakraborty, P.: Dynamic secondary ion mass spectrometry. In: Chakraborty, P. (ed.) Ion Beam Analysis of Surfaces and Interfaces of Condensed Matter Systems (Chap 7), pp. 217–265. Nova Science Inc., New York (USA) (2002)

    Google Scholar 

  • Choudhury, B., Borah, B., Choudhury, A.: Photochem. Photobio. 88, 257–264 (2011)

    Article  Google Scholar 

  • Choudhury, B., Bayan, S., Choudhury, A., Chakraborty, P.: J. Colloid Interface Sci. 465, 1–10 (2016)

    Google Scholar 

  • Courjal, N., Bernal, M.P., Caspar, A., Ulliac, G., Bassignot, F., Manuel, L.G., Suarez, M.: Lithium niobate optical waveguides and microwaveguides. In: You, K.Y. (ed.) Emerging Waveguide Technology, pp. 153–175. Intech Open (2018)

    Google Scholar 

  • Davies, J.A.: High energy density collision cascades and spike effects. In: Williams, J.S., Poate, J.M. (eds) Ion Implantation and Beam Processing, pp. 81–97 (Chap 4). Elsevier Inc. Amsterdam (1984)

    Google Scholar 

  • Devi, L.G., Kavitha, R.: Appl. Catal. B Environ. 140, 559–587 (2013)

    Article  Google Scholar 

  • Escarra, M.D., Thongrattanasiri, S., Charles, W.O., Hoffman, A.J., Podolskiy, V.A., Claire, G.: Opt. Express 19, 14990–14998 (2011)

    Article  CAS  Google Scholar 

  • Gao, Y.: J. Appl. Phys. 64, 3760 (1988)

    Article  CAS  Google Scholar 

  • Gao, Y., Marie, Y., Saldi, F., Migeon, H.N.: Int. J. Mass Spectrom Ion Proc. 11–18 (1995)

    Google Scholar 

  • Gavelle, M., Bazizi, E.M., Scheid, E., Armand, C.: Mater. Sci. Eng. B 154, 110–113 (2008)

    Article  Google Scholar 

  • Gnaser, H.: Surf. Sci. 342, 319–326 (1995)

    Article  CAS  Google Scholar 

  • Gnaser, H., Oechsner, H.: Surf. Sci. 302, L289–L292 (1994a)

    Article  CAS  Google Scholar 

  • Gnaser, H., Oechsner, H.: Surf. Interface Anal. 21, 257–260 (1994b)

    Article  CAS  Google Scholar 

  • Gnaser, H., Orendorz, A., Ziegler, C., Rowlett, E.: Appl. Surf. Sci. 252, 6996–6999 (2006)

    Article  CAS  Google Scholar 

  • Gnaser, H.: Low-energy ion irradiation of solid surfaces (Springer Tracts in Modern Physics, vol. 146). Springer, Berlin, Germany (1999)

    Google Scholar 

  • Haag, M., Gnaser, H., Oechsner, H.: Fresenius J. Anal. Chem. 353, 565–569 (1995)

    Article  CAS  Google Scholar 

  • Harrison, D.E., Levy, N.S., Johnson, J.P., Effron, H.M.: Appl. Phys. 39, 3742–3761 (1968)

    Article  CAS  Google Scholar 

  • Havelund, R., Seah, M.P., Tiddia, M., Gilmore, I.S.: J. Am. Soc. Mass Spectrom. 29, 774–785 (2018)

    Article  CAS  Google Scholar 

  • Hoffman, A.J., Sridhar, A., Braun, P.X., Alekseyev, L., Howard, S.S., Franz, K.J., Cheng, L., Choa, F.S., Sivco, D.L., Podolskiy, V.A., Narimanov, E.E., Gmachl, C.: J. Appl. Phys. 105, 122411–122417 (2009)

    Article  Google Scholar 

  • Hofmann, S.: Appl. Surf. Sci. 70–71, 9–19 (1993)

    Article  Google Scholar 

  • Hofmann, S.: Surf. Interface Anal. 21, 673–678 (1994)

    Article  CAS  Google Scholar 

  • Holliger, P., Laugier, F., Dupuy, J.C.: Surf. Interface Anal. 34, 472–476 (2002)

    Article  CAS  Google Scholar 

  • https://attic.gsfc.nasa.gov/huygensgcms/MS_Analyzer_1.htm

  • https://www.hidenanalytical.com/applications/surface-analysis/contamination-with-silicone/

  • Marie, Y., Gao, Y., Saldi, F., Migeon, H.N.: Surf. Interface Anal. 23, 38–43 (1995)

    Article  CAS  Google Scholar 

  • Marseilhan, D., Barnes, J.P., Fillot, F., Hartmann, J.M., Holliger, P.: Appl. Surf. Sci. 255, 1412–1414 (2008a)

    Article  CAS  Google Scholar 

  • Marseilhan, D., Barnes, J.P., Fillot, F., Hartmann, J.M., Holliger, P.: Appl. Surf. Sci. 255, 1412 (2008)

    Google Scholar 

  • Mei, H., Laws, T.S., Terlier, T., Verduzco, R., Stein, G.E.: J. Polym. Sci. 60, 1174–1198 (2022)

    Article  CAS  Google Scholar 

  • Mondal, S., Gnaser, H., Chakraborty, P.: Eur. Phys. J. D 66, 197–203 (2012)

    Article  Google Scholar 

  • Mootz, T., Adriaens, A., Adams, F.: Int. J. Mass Spectrom. Ion Process. 156, 1–10 (1996)

    Article  CAS  Google Scholar 

  • Noël, C., Tuccitto, N., Busby, Y., Berger, M.A., Licciardello, A., List-Kratochvil, E.J.W., Houssiau, L.: ACS Appl. Polym. Mater. 1, 1821–1828 (2019)

    Article  Google Scholar 

  • Oechsner, H., Gerhard, W.: Phys. Lett. A 40, 211–212 (1972)

    Article  CAS  Google Scholar 

  • Otomo, S., Maruya, H., Seo, S., Iwase, F.: Appl. Surf. Sci. 252, 7275–7278 (2006)

    Article  Google Scholar 

  • Priebe, A., Xie, T., Bürki, G., Pethö, L., Michler, J.: J. Anal. Spectrom. 35, 1156–1166 (2020)

    Article  CAS  Google Scholar 

  • Prudon, G., Gautier, B., Dupuy, J.C., Dubois, C., Bonneau, M., Delmas, J., Vallard, J.P., Bremond, G., Brenier, R.: Thin Solid Films 294, 54–59 (1997)

    Article  CAS  Google Scholar 

  • Saha, B., Chakraborty, P.: Nucl. Instrum. Methods Phys. Res. B 258, 218–225 (2007)

    Article  CAS  Google Scholar 

  • Saha, B., Chakraborty, P.: Energy Proc. 41, 80–109 (2013)

    Article  CAS  Google Scholar 

  • Saha, B., Sarkar, S., Chakraborty, P., Gnaser, H.: Surf. Sci. 602, 1061–1065 (2008)

    Article  CAS  Google Scholar 

  • Saha, B., Chakraborty, P., Gnaser, H., Sharma, M., Sanyal, M.K.: Appl. Phys. A 108, 671–677 (2012)

    Article  CAS  Google Scholar 

  • Sarkar, S., Chakraborty, P., Gnaser, H.: Phys. Rev. B 70, 195427–195431 (2004)

    Article  Google Scholar 

  • Sarkar, S., Datta, A., Chakraborty, P.: J. Mater. Res. 20, 2639–2646 (2005)

    Article  CAS  Google Scholar 

  • Sarkar, S., Chakraborty, P., Sanyal, M.K., Caccavale, F., Arora, B.M.: Surf. Interface Anal. 29, 659–662 (2000)

    Google Scholar 

  • Schenkel, T.: Surface analysis of slow, highly-charged ions like Au69+: TOF-SIMS and the probing of nano-environments. In: Chakraborty Purushottam (ed) Ion Beam Analysis of Surfaces and Interfaces of Condensed Matter Systems (Chap 8). Nova Science Inc., New York (USA), pp. 267–310 (2002)

    Google Scholar 

  • Sharma, M., Sanyal, M.K., Mukhopadhyay, M., Bera, M., Saha, B., Chakraborty, P.: J. Appl. Phys. 110, 102204–102208 (2011)

    Google Scholar 

  • Shea, M.P., Havelund, R., Gilmore, I.S.: J. Phys. Chem. C 120(46), 26328–26335 (2016)

    Article  Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Science 292, 77–79 (2001)

    Article  CAS  Google Scholar 

  • Slodzian, G.: Phys. Scripta T6, 54–66 (1983)

    Article  CAS  Google Scholar 

  • Thompson, M.W.: Phil. Trans. r. Soc. Lond. A 362, 5–28 (2004)

    Article  CAS  Google Scholar 

  • Van der Weg, W.F., Rol, P.K.: Nucl. Instrum. Meth. 38, 274–276 (1965)

    Article  Google Scholar 

  • Vickerman, J.C.: Static secondary ion mass spectrometry. In: Walls, J.M. (ed.) Methods of Surface Analysis, pp. 169–215. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Warren, B.E.: X-ray Diffraction. Addison Wesley Publishing Company Inc., Reading, Massachusetts (USA) (1969)

    Google Scholar 

  • Williams, P.: Surf. Sci. 90, 588–634 (1979)

    Article  CAS  Google Scholar 

  • Winograd: Annu. Rev. Anal. Chem. 11, 29–48 (2018)

    Article  CAS  Google Scholar 

  • Wittmaack, K.: Surf. Sci. 429, 84–101 (1999)

    Article  CAS  Google Scholar 

  • Wittmaack, K.: Surf. Sci. Rep. 68, 108–230 (2013)

    Article  CAS  Google Scholar 

  • Yu, M.L.: In: Benninghoven, A. (ed) Proceedings of SIMS VI, Wiley, NY, USA (1987)

    Google Scholar 

  • Yu, M.L.: Charged and excited states of sputtered atoms. In: Behrisch, R., Wittmaack, K. (eds.) Sputtering by Particle Bombardment III, pp. 91–160. Springer-Verlag, Berlin (1991)

    Chapter  Google Scholar 

  • Yu, M.L., Mann, K.: Phys. Rev. Lett. 57, 1476–1479 (1986)

    Article  CAS  Google Scholar 

  • Zener, C.: Proc Roy Soc A 137, 696–702 (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purushottam Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, P. (2024). High-Resolution Molecular Secondary Ion Mass Spectrometry for Absolute Quantification of Materials in Low-Dimensional Structures: Foundation, Perception and Challenges. In: Ningthoujam, R.S., Tyagi, A.K. (eds) Handbook of Materials Science, Volume 1. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-7145-9_21

Download citation

Publish with us

Policies and ethics