Skip to main content

Secondary Ion Mass Spectrometry (SIMS)

  • Chapter
  • First Online:
Analytical Methods and Instruments for Micro- and Nanomaterials

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 23))

  • 403 Accesses

Abstract

Among other characterization techniques, secondary ion mass spectrometry (SIMS) is of particular interest due to its unprecedented sensitivity and ability for detection of low concentrations of practically any element of the periodic table with large spatial resolution. At present time SIMS is a primary tool used in both industry and research areas and also highly relevant for analysis of nano-scaled materials. However, SIMS is a quite complicated technique, where deep understanding the physical processes involved is vitally required for a correct interpretation of the results obtained. Therefore, in the present chapter special attention is paid to the basic principles of SIMS as well as complicating factors affecting the measurements. In the first part of the chapter, devoted to the basics of SIMS, two fundamental processes (sputtering and ionization) are described in some detail. After that the main types of modern SIMS instruments are reviewed, describing the different primary ion sources and the variety of mass spectrometers for detecting secondary ions. Finally, the main operation modes of SIMS instruments are described in conjunction with examples of SIMS applications with complicating factors and practical problems that are encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, J. J. (1910). Rays of positive electricity. Philosophical Magazine, 20, 252.

    Google Scholar 

  2. Herzog, R. F. K., & Viehbock, F. P. (1949). Ion source for mass spectrography. Physical Review, 76, 855L.

    Article  Google Scholar 

  3. Herzog, R.F.K., Poschenreider, W.P., & Satkiewicz, F.G. (1967). NASA, Contract No NAS5-9254, final report GCA-TR-67-3N.

    Google Scholar 

  4. Sigmund, P. (1969). Theory of sputtering. Physical Review, 184, 383.

    Article  CAS  Google Scholar 

  5. Zalm, P. C. (1994). Secondary ion mass spectrometry. Vacuum, 45, 753.

    Article  CAS  Google Scholar 

  6. Morris, R. J. H., & Dowsett, M. G. (2009). Ion yields and erosion rates for Si1−xGex (0≤x≤1) ultralow energy O2+ secondary ion mass spectrometry in the energy range of 0.25–1 keV. Journal of Applied Physics, 105, 114316.

    Article  Google Scholar 

  7. Balden, M., Bardamid, A. F., Belyaeva, A. I., Slatin, K. A., Davis, J. W., Haasz, A. A., Poon, M., Konovalov, V. G., Ryzhkov, I. V., Shapoval, A. N., & Voitsenya, V. S. (2004). Surface roughening and grain orientation dependence of the erosion of polycrystalline stainless steel by hydrogen irradiation. Journal of Nuclear Materials, 329–333, 1515.

    Article  Google Scholar 

  8. Nørskov, J. K., & Lundqvist, B. I. (1979). Secondary-ion emission probability in sputtering. Physical Review B, 19, 5661.

    Article  Google Scholar 

  9. Evans Analytical Group (www.eag.com)

  10. IONTOF GmbH (www.iontof.com)

  11. Wolf, B. (Ed.). (2017). Handbook of ion sources (p. 560). CRC Press.

    Google Scholar 

  12. Krohn, V. E. (1962). Emission of negative ions from metal surfaces bombarded by positive cesium ions. Journal of Applied Physics, 33, 3523.

    Article  CAS  Google Scholar 

  13. Taylor, G. (1964). Disintegration of water droplets in an electric field. Proceedings of the Royal Society of London. Series A, 280, 383.

    Google Scholar 

  14. Li, Y., Wang, S., & Smith, S. P. (2006). SIMS analysis of nitrogen in various metals and ZnO. Applied Surface Science, 252, 7066.

    Article  CAS  Google Scholar 

  15. Ber, B.Ya., Kazantsev, D.Yu., Kalinina, E.V., Kovarskii, A.P., Kossov, V.G., Hallen, A., Yafaev, R.R. (2004). Determination of nitrogen in silicon carbide by secondary ion mass spectrometry. Journal of Analytical Chemistry 59, 250 (2004).

    Google Scholar 

  16. Jakiela, R., Barcz, A., Sarnecki, J., & Celler, G. K. (2018). Ultrahigh sensitivity SIMS analysis of oxygen in silicon. Surface and Interface Analysis, 50, 729.

    Article  CAS  Google Scholar 

  17. Michałowski, P. P., Gaca, J., Wójcik, M., & Turos, A. (2018). Oxygen out-diffusion and compositional changes in zinc oxide during ytterbium ions bombardment. Nanotechnology, 29, 425710.

    Article  Google Scholar 

  18. Saka, S. K., Vogts, A., Kröhnert, K., Hillion, F., Rizzoli, S. O., & Wessels, J. T. (2014). Correlated optical and isotopic nanoscopy. Nature Communications, 5, 8.

    Article  Google Scholar 

  19. Wirtz, T., Fleming, Y., Gerard, M., Gysin, U., Glatzel, T., Meyer, E., Wegmann, U., Maier, U., Odriozola, A. H., & Uehli, D. (2012). Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis. Review of Scientific Instruments, 83, 063702.

    Article  Google Scholar 

  20. Ruf, T., Henn, R.W., Asen-Palmer, M., Gmelin, E., Cardona, M., Pohl, H.-J., Devyatych, G.G., Sennikov, P.G. (2000). Thermal conductivity of isotopically enriched silicon. Solid State Communications 115, 243 (2000)

    Google Scholar 

  21. Azarov, A., Venkatachalapathy, V., Mei, Z., Liu, L., Du, X., Galeckas, A., Monakhov, E., Svensson, B. G., & Kuznetsov, A. (2016). Self-diffusion measurements in isotopic heterostructures of undoped and in situ doped ZnO: zinc vacancy energetics. Physical Review B, 94, 195208.

    Article  Google Scholar 

  22. Michałowski, P. P., Grzanka, E., Grzanka, S., Lachowski, A., Staszczak, G., Plesiewicz, J., Leszczyński, M., & Turos, A. (2019). Indium concentration fluctuations in InGaN/GaN quantum wells. Journal of Analytical Atomic Spectrometry, 34, 1718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Azarov .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azarov, A. (2023). Secondary Ion Mass Spectrometry (SIMS). In: Analytical Methods and Instruments for Micro- and Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-031-26434-4_6

Download citation

Publish with us

Policies and ethics