Skip to main content

Instrumentation and Monitoring of Additive Manufacturing Processes for the Biomedical Applications

  • Chapter
  • First Online:
Additive Manufacturing of Bio-implants

Abstract

This chapter focuses on the instrumentation and monitoring of additive manufacturing (AM) processes for biomedical applications. First, the defects generated during AM processes and their links with process parameters are studied, with suggestions to minimize or eliminate these defects. After that, the techniques of instrumentation and monitoring of the different physical quantities (temperature, the geometry of the weld pool, etc.) generated during manufacture are certainly evident. Finally, we will look at multi-sensor solutions allowing more efficient process control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this study «VED» stands for Volumetric Energy Density, which is defined as the ratio between laser power and the scanning speed x the hatch distance x the layer thickness [95].

  2. 2.

    A black body is an ideal body, which absorbs the integrality of incident radiations and emits a radiation, which is equivalent to the one given by Planck’s law.

References

  1. Liu Y, Wang W, Zhang L-C (2017) Additive manufacturing techniques and their biomedical applications. Family Med Commun Hlth 5:286–98

    Google Scholar 

  2. Rehman M, Yanen W, Mushtaq RT, Ishfaq K, Zahoor S, Ahmed A, et al (2023) Additive manufacturing for biomedical applications: a review on classification, energy consumption, and its appreciable role since COVID-19 pandemic. Prog Addit Manuf [Internet]. 2022 [cited 2023 May 17]; Available from: https://doi.org/10.1007/s40964-022-00373-9

  3. Bozkurt Y, Karayel E (2021) 3D printing technology; methods, biomedical applications, future opportunities and trends. J Market Res 14:1430–1450

    CAS  Google Scholar 

  4. Du C, Zhao Y, Jiang J, Wang Q, Wang H, Li N et al (2023) Pore defects in laser powder bed fusion: formation mechanism, control method, and perspectives. J Alloy Compd 944:169215

    Article  CAS  Google Scholar 

  5. Moridi A (2020) Biomedical applications of metal additive manufacturing: current state-of-the-art and future perspective. AJBSR 7:6–10

    Article  Google Scholar 

  6. Tom T, Sreenilayam SP, Brabazon D, Jose JP, Joseph B, Madanan K et al (2022) Additive manufacturing in the biomedical field-recent research developments. Results Eng 16:100661

    Article  Google Scholar 

  7. Culmone C, Smit G, Breedveld P (2019) Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf 27:461–473

    Google Scholar 

  8. Velásquez-García LF, Kornbluth Y (2021) Biomedical applications of metal 3D printing. Annu Rev Biomed Eng 23:307–338

    Article  PubMed  Google Scholar 

  9. Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529

    Article  CAS  PubMed  Google Scholar 

  10. Chua K, Khan I, Malhotra R, Zhu D (2021) Additive manufacturing and 3D printing of metallic biomaterials. Eng Regeneration 2:288–299

    Article  Google Scholar 

  11. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J et al (2017) Metallic biomaterials: current challenges and opportunities. Materials 10:884

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aranda JL, Jiménez MF, Rodríguez M, Varela G (2015) Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothorac Surg 48:e92–e94

    Article  PubMed  Google Scholar 

  13. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28:366–373

    Article  CAS  Google Scholar 

  14. Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4:1536–1544

    Article  CAS  PubMed  Google Scholar 

  15. Kamel MK, Cheng A, Vaughan B, Stiles B, Altorki N, Spector JA et al (2020) Sternal reconstruction using customized 3D-printed titanium implants. Ann Thorac Surg 109:e411–e414

    Article  PubMed  Google Scholar 

  16. Kittichokechai P, Sirichatchai K, Puncreobutr C, Lohwongwatana B, Saonanon P (2022) A novel patient-specific titanium mesh implant design for reconstruction of complex orbital fracture. Plast Reconstr Surg Glob Open 10:e4081

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ponader S, Vairaktaris E, Heinl P, Wilmowsky C v., Rottmair A, Körner C, et al (2008) Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J Biomed Mater Res Part A 84A:1111–9

    Google Scholar 

  18. Rotaru H, Schumacher R, Kim S-G, Dinu C (2015) Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects. Maxillofacial Plastic Reconstructive Surgery 37:1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Van der Stok J, Van der Jagt OP, Amin Yavari S, De Haas MFP, Waarsing JH, Jahr H et al (2013) Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 31:792–799

    Article  PubMed  Google Scholar 

  20. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Mater 65:21–24

    Article  CAS  Google Scholar 

  21. Li X-K, Yuan C-F, Wang J-L, Zhang Y-Q, Zhang Z-Y, Guo Z (2013) The treatment effect of porous titanium alloy rod on the early stage Talar osteonecrosis of sheep. PLoS ONE 8:e58459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu S-H, Li Y, Zhang Y-Q, Li X-K, Yuan C-F, Hao Y-L et al (2013) Porous titanium-6 aluminum-4 vanadium cage has better Osseointegration and less Micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs 37:E191-201

    Article  CAS  PubMed  Google Scholar 

  23. Jakubowicz J (2020) Special issue: Ti-based biomaterials: synthesis, properties and applications. Materials 13:1696

    Google Scholar 

  24. Arjunan A, Robinson J, Baroutaji A, Tuñón-Molina A, Martí M, Serrano-Aroca Á (2021) 3D printed cobalt-chromium-molybdenum porous Superalloy with superior antiviral activity. Int J Mol Sci 22:12721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN (2020) Mechanical properties of laser-sintered 3D-printed cobalt chromium and soft-milled cobalt chromium. Prosthesis 2:313–320

    Article  Google Scholar 

  26. Finazzi V, Demir AG, Biffi CA, Migliavacca F, Petrini L, Previtali B (2020) Design and functional testing of a novel balloon-expandable cardiovascular stent in CoCr alloy produced by selective laser melting. J Manuf Process 55:161–173

    Article  Google Scholar 

  27. Ganbold B, Heo S-J, Koak J-Y, Kim S-K, Cho J (2019) Human stem cell responses and surface characteristics of 3D printing Co–Cr dental material. Materials 12:3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kazantseva NV, Ezhov IV, Davydov DI, Merkushev AG (2019) Analysis of structure and mechanical properties of Co–Cr–Mo alloy obtained by 3D printing. Phys Metals Metallogr. 120:1172–1179

    Article  CAS  Google Scholar 

  29. Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y, Yan C (2017) Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. Mater Des 114:633–641

    Article  CAS  Google Scholar 

  30. Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L et al (2016) Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater 36:296–309

    Article  CAS  PubMed  Google Scholar 

  31. Karamian E, Kalantar Motamedi MR, Khandan A, Soltani P, Maghsoudi S (2014) An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant. Progress Nat Sci Mater Int 24:150–156

    Article  CAS  Google Scholar 

  32. Kong D, Ni X, Dong C, Lei X, Zhang L, Man C et al (2018) Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater Des 152:88–101

    Article  CAS  Google Scholar 

  33. Yang K, Ren Y (2010) Nickel-free austenitic stainless steels for medical applications. Sci Technol Adv Mater 11:014105

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F et al (2010) Magnesium alloys as implant materials—principles of property design for Mg–RE alloys. Acta Biomater 6:1714–1725

    Article  CAS  PubMed  Google Scholar 

  35. Kamrani S, Fleck C (2019) Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals 32:185–193

    Article  CAS  PubMed  Google Scholar 

  36. Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM et al (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4:1396–1411

    Article  CAS  PubMed  Google Scholar 

  37. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K (2017) The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 26:513–518

    Article  Google Scholar 

  38. Merkt S, Kleyer A, Hueber AJ (2014) The additive manufacture of patient-tailored finger implants. Laser Tech J 11:54–56

    Article  CAS  Google Scholar 

  39. Sakes A, Hovland K, Smit G, Geraedts J, Breedveld P (2018) Design of a novel three-dimensional-printed two degrees-of-freedom steerable electrosurgical grasper for minimally invasive surgery. J Med Dev [Internet]. 2018 [cited 2023 May 24];12. Available from.https://doi.org/10.1115/1.4038561

  40. Sun Z, Vladimirov G, Nikolaev E, Velásquez-García LF (2018) Exploration of metal 3-D printing technologies for the microfabrication of freeform, finely featured, Mesoscaled structures. J Microelectromech Syst 27:1171–1185

    Article  CAS  Google Scholar 

  41. Nahata S, Ozdoganlar OB (2019) Feasibility of metal additive manufacturing for fabricating custom surgical instrumentation for hip and knee implants. Procedia Manufacturing 34:772–779

    Article  Google Scholar 

  42. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  PubMed  Google Scholar 

  43. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  CAS  Google Scholar 

  44. Katz JL (1980) Anisotropy of Young’s modulus of bone. Nature 283:106–107

    Article  CAS  PubMed  Google Scholar 

  45. Martin RB (1991) Determinants of the mechanical properties of bones. J Biomech 24:79–88

    Article  PubMed  Google Scholar 

  46. Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317–328

    Article  CAS  PubMed  Google Scholar 

  47. Saini M (2015) Implant biomaterials: a comprehensive review. WJCC. 3:52

    PubMed  Google Scholar 

  48. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670

    Article  CAS  PubMed  Google Scholar 

  49. Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO (1998) Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech 31:909–917

    Article  CAS  PubMed  Google Scholar 

  50. Kohn DH, Ducheyne P (1990) A parametric study of the factors affecting the fatigue strength of porous coated Ti-6A1-4V implant alloy. J Biomed Mater Res 24:1483–1501

    Article  CAS  PubMed  Google Scholar 

  51. Yue S, Pilliar RM, Weatherly GC (1984) The fatigue strength of porous-coated Ti–6% Al–4% V implant alloy. J Biomed Mater Res 18:1043–1058

    Article  CAS  PubMed  Google Scholar 

  52. Arabnejad S, Johnston B, Tanzer M, Pasini D (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res 35:1774–1783

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Li S, Hou W, Wang S, Hao Y, Yang R et al (2016) Electron beam melted beta-type Ti–24Nb–4Zr–8Sn porous structures with high strength-to-modulus ratio. J Mater Sci Technol 32:505–508

    Article  CAS  Google Scholar 

  54. Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B et al (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392

    Article  CAS  PubMed  Google Scholar 

  55. Xiao X, Wang W, Liu D, Zhang H, Gao P, Geng L et al (2015) The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep 5:9409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68:355–369

    Article  PubMed  Google Scholar 

  57. Parthasarathy J, Starly B, Raman S (2011) A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process 13:160–170

    Article  Google Scholar 

  58. Amarnath G, Muddugangadhar B, Tripathi S, Dikshit S, Ms D (2011) Biomaterials for dental implants: an overview. Int J Oral Implantology Clin Res 2:13–24

    Article  Google Scholar 

  59. Putra NE, Leeflang MA, Minneboo M, Taheri P, Fratila-Apachitei LE, Mol JMC et al (2021) Extrusion-based 3D printed biodegradable porous iron. Acta Biomater 121:741–756

    Article  CAS  PubMed  Google Scholar 

  60. Hojjatzadeh SMH, Parab ND, Guo Q, Qu M, Xiong L, Zhao C et al (2020) Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding. Int J Mach Tools Manuf 153:103555

    Article  Google Scholar 

  61. Fu J, Li H, Song X, Fu MW (2022) Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol 122:165–199

    Article  CAS  Google Scholar 

  62. Galy C, Le Guen E, Lacoste E, Arvieu C (2018) Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Addit Manuf 22:165–175

    CAS  Google Scholar 

  63. Kasperovich G, Haubrich J, Gussone J, Requena G (2016) Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des 105:160–170

    Article  CAS  Google Scholar 

  64. Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K et al (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363:849–852

    Article  CAS  PubMed  Google Scholar 

  65. McCann R, Obeidi MA, Hughes C, McCarthy É, Egan DS, Vijayaraghavan RK et al (2021) In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review. Addit Manuf 45:102058

    Google Scholar 

  66. Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R (2015) Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J Mater Process Technol 221:112–120

    Article  CAS  Google Scholar 

  67. Cunningham R, Nicolas A, Madsen J, Fodran E, Anagnostou E, Sangid MD et al (2017) Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Mater Res Lett 5:516–525

    Article  CAS  Google Scholar 

  68. Laleh M, Hughes AE, Yang S, Wang J, Li J, Glenn AM et al (2021) A critical insight into lack-of-fusion pore structures in additively manufactured stainless steel. Addit Manuf 38:101762

    CAS  Google Scholar 

  69. Gu D, Hagedorn Y-C, Meiners W, Meng G, Batista RJS, Wissenbach K et al (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60:3849–3860

    Article  CAS  Google Scholar 

  70. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211:275–284

    Article  CAS  Google Scholar 

  71. Qu M, Guo Q, Escano LI, Nabaa A, Hojjatzadeh SMH, Young ZA et al (2022) Controlling process instability for defect lean metal additive manufacturing. Nat Commun 13:1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schwerz C, Raza A, Lei X, Nyborg L, Hryha E, Wirdelius H (2021) In-situ detection of redeposited spatter and its influence on the formation of internal flaws in laser powder bed fusion. Addit Manuf 47:102370

    CAS  Google Scholar 

  73. Cao L (2020) Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process. Comput Mater Sci 179:109686

    Article  CAS  Google Scholar 

  74. Tumkur TU, Voisin T, Shi R, Depond PJ, Roehling TT, Wu S, et al (2021) Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing. Sci Adv 7:eabg9358

    Google Scholar 

  75. King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214:2915–2925

    Article  Google Scholar 

  76. Günther J, Krewerth D, Lippmann T, Leuders S, Tröster T, Weidner A et al (2017) Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int J Fatigue 94:236–245

    Article  Google Scholar 

  77. Chauvet E, Kontis P, Jägle EA, Gault B, Raabe D, Tassin C et al (2018) Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting. Acta Mater 142:82–94

    Article  CAS  Google Scholar 

  78. Gong H, Rafi K, Gu H, Janaki Ram GD, Starr T, Stucker B (2015) Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater Des 86:545–554

    Article  CAS  Google Scholar 

  79. Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA et al (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int J Fatigue 48:300–307

    Article  CAS  Google Scholar 

  80. Min D, Shen J, Lai S, Chen J, Xu N, Liu H (2011) Effects of heat input on the low power Nd:YAG pulse laser conduction weldability of magnesium alloy AZ61. Opt Lasers Eng 49:89–96

    Article  Google Scholar 

  81. Kou S (2003) Solidification and liquation cracking issues in welding

    Google Scholar 

  82. Oliveira JP, Santos TG, Miranda RM (2020) Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci 107:100590

    Article  CAS  Google Scholar 

  83. Robinson JL, Scott MH (1997) Liquation cracking during the welding of austenitic stainless steels and nickel alloys. Philos Trans Royal Soc London Ser A Math Phys Sci 295:105–117

    Google Scholar 

  84. Song B, Dong S, Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Des 35:120–125

    Article  CAS  Google Scholar 

  85. Stopyra W, Gruber K, Smolina I, Kurzynowski T, Kuźnicka B (2020) Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking. Addit Manuf 35:101270

    CAS  Google Scholar 

  86. Xiao H, Li S, Han X, Mazumder J, Song L (2017) Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing. Mater Des 122:330–339

    Article  CAS  Google Scholar 

  87. Tang HP, Yang GY, Jia WP, He WW, Lu SL, Qian M (2015) Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting. Mater Sci Eng A 636:103–107

    Article  CAS  Google Scholar 

  88. Hu Z, Nie X, Qi Y, Zhang H, Zhu H (2021) Cracking criterion for high strength Al–Cu alloys fabricated by selective laser melting. Addit Manuf 37:101709

    CAS  Google Scholar 

  89. Nie X, Zhang H, Zhu H, Hu Z, Ke L, Zeng X (2018) Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys. J Alloys Compounds 764:977–86

    Google Scholar 

  90. Yu M, Wan Y, Ren B, Wang H, Zhang X, Qiu C et al (2020) 3D printed Ti–6Al–4V implant with a micro/nanostructured surface and its cellular responses. ACS Omega 5:31738–31743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mumtaz K, Hopkinson N (2009) Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J 15:96–103

    Article  Google Scholar 

  92. Kiani P, Scipioni Bertoli U, Dupuy AD, Ma K, Schoenung JM (2020) A statistical analysis of powder Flowability in metal additive manufacturing. Adv Eng Mater 22:2000022

    Article  CAS  Google Scholar 

  93. Spierings AB, Voegtlin M, Bauer T, Wegener K (2016) Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Prog Addit Manuf 1:9–20

    Article  Google Scholar 

  94. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO et al (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224

    Article  CAS  Google Scholar 

  95. Moussaoui K, Rubio W, Mousseigne M, Sultan T, Rezai F (2018) Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng A 735:182–190

    Article  CAS  Google Scholar 

  96. Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79

    Article  CAS  Google Scholar 

  97. Gu D, Shen Y (2009) Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des 30:2903–2910

    Article  CAS  Google Scholar 

  98. Moon S, Ma R, Attardo R, Tomonto C, Nordin M, Wheelock P et al (2021) Impact of surface and pore characteristics on fatigue life of laser powder bed fusion Ti–6Al–4V alloy described by neural network models. Sci Rep 11:20424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Greitemeier D, Palm F, Syassen F, Melz T (2017) Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int J Fatigue 94:211–217

    Article  CAS  Google Scholar 

  100. Shipley H, McDonnell D, Culleton M, Coull R, Lupoi R, O’Donnell G et al (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int J Mach Tools Manuf 128:1–20

    Article  Google Scholar 

  101. Mercelis P, Kruth J (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12:254–265

    Article  Google Scholar 

  102. Mugwagwa L, Yadroitsev I, Matope S (2019) Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals 9:1042

    Article  CAS  Google Scholar 

  103. Fu J, Hu Z, Song X, Zhai W, Long Y, Li H et al (2020) Micro selective laser melting of NiTi shape memory alloy: defects, microstructures and thermal/mechanical properties. Opt Laser Technol 131:106374

    Article  CAS  Google Scholar 

  104. Fu J, Qu S, Ding J, Song X, Fu MW (2021) Comparison of the microstructure, mechanical properties and distortion of stainless steel 316 L fabricated by micro and conventional laser powder bed fusion. Addit Manuf 44:102067

    CAS  Google Scholar 

  105. Corbin DJ, Nassar AR, Reutzel EW, Beese AM, Michaleris P (2018) Effect of substrate thickness and preheating on the distortion of laser deposited Ti–6Al–4V. J Manuf Sci Eng [Internet]. 2018 [cited 2023 Jun 9];140. Available from: https://doi.org/10.1115/1.4038890

  106. Mugwagwa L, Dimitrov D, Matope S, Yadroitsev I (2018) Influence of process parameters on residual stress related distortions in selective laser melting. Procedia Manuf 21:92–99

    Article  Google Scholar 

  107. Salem M, Le Roux S, Hor A, Dour G (2020) A new insight on the analysis of residual stresses related distortions in selective laser melting of Ti-6Al-4V using the improved bridge curvature method. Addit Manuf 36:101586

    CAS  Google Scholar 

  108. Montero-Sistiaga ML, Godino-Martinez M, Boschmans K, Kruth J-P, Van Humbeeck J, Vanmeensel K (2018) Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting). Addit Manuf 23:402–410

    CAS  Google Scholar 

  109. Helmer H, Bauereiß A, Singer RF, Körner C (2016) Grain structure evolution in Inconel 718 during selective electron beam melting. Mater Sci Eng A 668:180–187

    Article  CAS  Google Scholar 

  110. Thijs L, Kempen K, Kruth J-P, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819

    Article  CAS  Google Scholar 

  111. Amato KN, Gaytan SM, Murr LE, Martinez E, Shindo PW, Hernandez J et al (2012) Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 60:2229–2239

    Article  CAS  Google Scholar 

  112. Vilaro T, Colin C, Bartout JD (2011) As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans A 42:3190–3199

    Article  CAS  Google Scholar 

  113. Nicoletto G (2017) Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int J Fatigue 94:255–262

    Article  CAS  Google Scholar 

  114. Qin Z, Kang N, El Mansori M, Wang Z, Wang H, Lin X et al (2022) Anisotropic high cycle fatigue property of Sc and Zr-modified Al–Mg alloy fabricated by laser powder bed fusion. Addit Manuf 49:102514

    CAS  Google Scholar 

  115. Mani M, Lane B, Donmez A, Feng S, Moylan S, Fesperman R (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes [Internet]. National Institute of Standards and Technology; 2015 Feb p. NIST IR 8036. Report No.: NIST IR 8036. Available from: https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8036.pdf

  116. Valiorgue F, Brosse A, Naisson P, Rech J, Hamdi H, Bergheau JM (2013) Emissivity calibration for temperatures measurement using thermography in the context of machining. Appl Therm Eng 58:321–326

    Article  CAS  Google Scholar 

  117. Price S, Cooper K, Chou K (2023) Evaluations of temperature measurements by near-infrared thermography in powder-based electron-beam additive manufacturing. University of Texas at Austin; 2012 [cited 2023 Jun 12]. Available from: https://repositories.lib.utexas.edu/handle/2152/88450

  118. Krauss H, Eschey C, Zaeh MF (2012) Thermography for monitoring the selective laser melting process. University of Texas at Austin; 2012 [cited 2023 Jun 9]. Available from: https://repositories.lib.utexas.edu/handle/2152/88469

  119. Bayle F, Doubenskaia M (2008) Selective laser melting process monitoring with high speed infra-red camera and pyrometer. Fundamentals of Laser Assisted Micro- and Nanotechnologies [Internet]. SPIE; 2008 [cited 2023 Jun 12]. p. 39–46. Available from: https://doi.org/10.1117/12.786940.full

  120. Rodriguez E, Mireles J, Terrazas CA, Espalin D, Perez MA, Wicker RB (2015) Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography. Addit Manuf 5:31–39

    CAS  Google Scholar 

  121. Wegner A, Witt G (2011) Process monitoring in laser sintering using thermal imaging. University of Texas at Austin; 2011 [cited 2023 Jun 12]. Available from: https://repositories.lib.utexas.edu/handle/2152/88364

  122. Williams RJ, Piglione A, Rønneberg T, Jones C, Pham M-S, Davies CM et al (2019) In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties. Addit Manuf 30:100880

    Google Scholar 

  123. Dinwiddie RB, Dehoff RR, Lloyd PD, Lowe LE, Ulrich JB (2023) Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. Thermosense: Thermal Infrared Applications XXXV [Internet]. SPIE; 2013 [cited 2023 Jun 12]. p. 156–64. Available from: https://doi.org/10.1117/12.2018412.full

  124. Schwerdtfeger J, Singer RF, Körner C (2012) In situ flaw detection by IR-imaging during electron beam melting. Rapid Prototyping J 18:259–263

    Article  Google Scholar 

  125. Pavlov M, Doubenskaia M, Smurov I (2010) Pyrometric analysis of thermal processes in SLM technology. Phys Procedia 5:523–531

    Article  Google Scholar 

  126. Furumoto T, Ueda T, Alkahari MR, Hosokawa A (2013) Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera. CIRP Ann 62:223–226

    Article  Google Scholar 

  127. Shishkovsky IV, Scherbakov VI, Morozov YG, Kuznetsov MV, Parkin IP (2008) Surface Laser Sintering of exothermic powder compositions. J Therm Anal Calorim 91:427–436

    Article  CAS  Google Scholar 

  128. Yadroitsev I, Krakhmalev P, Yadroitsava I (2014) Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloy Compd 583:404–409

    Article  CAS  Google Scholar 

  129. Kleszczynski S, zur Jacobsmühlen J, Sehrt JT, Witt G (2012) Error detection in laser beam melting systems by high resolution imaging. University of Texas at Austin; 2012 [cited 2023 Jun 12]. Available from: https://repositories.lib.utexas.edu/handle/2152/88467

  130. Craeghs T, Clijsters S, Yasa E, Kruth J-P (2011) Online quality control of selective laser melting. University of Texas at Austin; 2011 [cited 2023 Jun 9]. Available from: https://repositories.lib.utexas.edu/handle/2152/88350

  131. Mazzoleni L, Demir AG, Caprio L, Pacher M, Previtali B (2020) Real-time observation of melt pool in selective laser melting: spatial, temporal, and wavelength resolution criteria. IEEE Trans Instrum Meas 69:1179–1190

    Article  Google Scholar 

  132. Craeghs T, Clijsters S, Kruth Jean-P, Bechmann F, Ebert Marie-C (2012) Detection of process failures in Layerwise laser melting with optical process monitoring. Physics Procedia 39:753–9

    Google Scholar 

  133. Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L et al (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:3602

    Article  PubMed  PubMed Central  Google Scholar 

  134. Leung CLA, Marussi S, Atwood RC, Towrie M, Withers PJ, Lee PD (2018) In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun 9:1355

    Article  PubMed  PubMed Central  Google Scholar 

  135. Calta NP, Wang J, Kiss AM, Martin AA, Depond PJ, Guss GM et al (2018) An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Rev Sci Instrum 89:055101

    Article  PubMed  Google Scholar 

  136. Uhlmann E, Krohmer E, Schmeiser F, Schell N, Reimers W (2020) A laser powder bed fusion system for in situ x-ray diffraction with high-energy synchrotron radiation. Rev Sci Instrum 91:075104

    Article  CAS  PubMed  Google Scholar 

  137. Li L (2002) A comparative study of ultrasound emission characteristics in laser processing. Appl Surf Sci 186:604–610

    Article  CAS  Google Scholar 

  138. Wang F, Mao H, Zhang D, Zhao X, Shen Y (2008) Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis. Appl Surf Sci 255:3267–3275

    Article  CAS  Google Scholar 

  139. Muktadir M, Hasan MN, Alam M (2023) Additive manufacturing and acoustic Emission: a brief review. J Additive Manuf Technol 632 p

    Google Scholar 

  140. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov. 5:16–40

    Article  Google Scholar 

  141. Van Belle L, Vansteenkiste G, Boyer JC (2013) Investigation of residual stresses induced during the selective laser melting process. Key Eng Mater 554–557:1828–1834

    Article  Google Scholar 

  142. Shiomi M, Osakada K, Nakamura K, Yamashita T, Abe F (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann 53:195–198

    Article  Google Scholar 

  143. Lopez A, Bacelar R, Pires I, Santos TG, Sousa JP, Quintino L (2018) Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit Manuf 21:298–306

    CAS  Google Scholar 

  144. Chivel Y (2013) Optical in-process temperature monitoring of selective laser melting. Phys Procedia 41:904–910

    Article  Google Scholar 

  145. Islam M, Purtonen T, Piili H, Salminen A, Nyrhilä O (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842

    Article  CAS  Google Scholar 

  146. Hirvimäki M, Manninen M, Lehti A, Happonen A, Salminen A, Nyrhilä O (2013) Evaluation of different monitoring methods of laser additive manufacturing of stainless steel. Adv Mater Res 651:812–819

    Article  Google Scholar 

  147. Liu S, Farahmand P, Kovacevic R (2014) Optical monitoring of high power direct diode laser cladding. Opt Laser Technol 64:363–376

    Article  CAS  Google Scholar 

  148. Lane B, Whitenton E, Moylan S (2023) Multiple sensor detection of process phenomena in laser powder bed fusion. Thermosense: Thermal Infrared Applications XXXVIII [Internet]. SPIE; 2016 [cited 2023 Jun 12]. p. 20–8. Available from: https://doi.org/10.1117/12.2224390.full

  149. Maisonneuve J (2023) Fabrication directe de pièces aéronautiques en TA6V et IN718 : projection et fusion sélective par laser [Internet] [These de doctorat]. Paris, ENMP; 2008 [cited 2023 Mar 15]. Available from: https://www.theses.fr/2008ENMP0006

  150. Medrano A, Folkes J, Segal J, Pashby I (2023) Fibre laser metal deposition with wire: parameters study and temperature monitoring system. XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers [Internet]. SPIE; 2009 [cited 2023 Apr 3]. p. 539–45. Available from: https://doi.org/10.1117/12.816831.full

  151. Song L, Bagavath-Singh V, Dutta B, Mazumder J (2012) Control of melt pool temperature and deposition height during direct metal deposition process. Int J Adv Manuf Technol 58:247–256

    Article  Google Scholar 

  152. Wu B, Pan Z, Ding D, Cuiuri D, Li H, Fei Z (2018) The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy. J Mater Process Technol 258:97–105

    Article  CAS  Google Scholar 

  153. Denlinger ER, Heigel JC, Michaleris P, Palmer TA (2015) Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J Mater Process Technol 215:123–131

    Article  CAS  Google Scholar 

  154. Griffith ML, Schlienger ME, Harwell LD, Oliver MS, Baldwin MD, Ensz MT et al (1999) Understanding thermal behavior in the LENS process. Mater Des 20:107–113

    Article  Google Scholar 

  155. Salehi DS, Sensing and control of Nd:YAG laser cladding process

    Google Scholar 

  156. Altenburg SJ, Straße A, Gumenyuk A, Maierhofer C (2022) In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography. Quant InfraRed Thermogr J 19:97–114

    Article  Google Scholar 

  157. Emamian A, Farshidianfar MH, Khajepour A (2017) Thermal monitoring of microstructure and carbide morphology in direct metal deposition of Fe-Ti-C metal matrix composites. J Alloy Compd 710:20–28

    Article  CAS  Google Scholar 

  158. Farshidianfar MH, Khajepour A, Gerlich A (2016) Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf Technol 82:1173–1186

    Article  Google Scholar 

  159. Gharbi M, Etats de surface de pièces métalliques obtenues en Fabrication Directe par Projection Laser (FDPL): compréhension physique et voies d’amélioration

    Google Scholar 

  160. Gibson BT, Bandari YK, Richardson BS, Roschli AC, Post BK, Borish MC, et al (2019) Melt pool monitoring for control and data analytics in large-scale metal additive manufacturing. University of Texas at Austin; 2019 [cited 2022 Nov 28]. Available from: https://repositories.lib.utexas.edu/handle/2152/90450

  161. Hu D, Kovacevic R (2003) Sensing, modeling and control for laser-based additive manufacturing. Int J Mach Tools Manuf 43:51–60

    Article  Google Scholar 

  162. Akbari M, Kovacevic R (2019) Closed loop control of melt pool width in robotized laser powder–directed energy deposition process. Int J Adv Manuf Technol 104:2887–2898

    Article  Google Scholar 

  163. Ding Y, Warton J, Kovacevic R (2016) Development of sensing and control system for robotized laser-based direct metal addition system. Addit Manuf 10:24–35

    Google Scholar 

  164. Donadello S, Motta M, Demir AG, Previtali B (2019) Monitoring of laser metal deposition height by means of coaxial laser triangulation. Opt Lasers Eng 112:136–144

    Article  Google Scholar 

  165. Fathi A, Khajepour A, Toyserkani E, Durali M (2007) Clad height control in laser solid freeform fabrication using a feedforward PID controller. Int J Adv Manuf Technol 35:280–292

    Article  Google Scholar 

  166. François J (2022) Apport à la compréhension et à la simulation numérique du procédé Laser Metal Deposition—poudre

    Google Scholar 

  167. Hofman JT, Pathiraj B, van Dijk J, de Lange DF, Meijer J (2012) A camera based feedback control strategy for the laser cladding process. J Mater Process Technol 212:2455–2462

    Article  Google Scholar 

  168. Mezari R (2014) Instrumentation, identification and control of laser direct metal deposition for additive manufacturing [Internet] [phdthesis]. Ecole nationale supérieure d’arts et métiers—ENSAM; 2014 [cited 2023 Jan 19]. Available from: https://pastel.archives-ouvertes.fr/tel-01477707

  169. Moralejo S, Penaranda X, Nieto S, Barrios A, Arrizubieta I, Tabernero I et al (2017) A feedforward controller for tuning laser cladding melt pool geometry in real time. Int J Adv Manuf Technol 89:821–831

    Article  Google Scholar 

  170. Xiong J, Zhang G, Qiu Z, Li Y (2013) Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. J Clean Prod 41:82–88

    Article  Google Scholar 

  171. Xiong J, Zhang G (2014) Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol 214:962–968

    Article  Google Scholar 

  172. Chabot A (2023) Multiphysics monitoring methodology for DED processes : development with an experimental approach [Internet] [phdthesis]. École centrale de Nantes; 2020 [cited 2023 Feb 3]. Available from: https://theses.hal.science/tel-03164132

  173. Garmendia I, Leunda J, Pujana J, Lamikiz A (2018) In-process height control during laser metal deposition based on structured light 3D scanning. Procedia CIRP 68:375–380

    Article  Google Scholar 

  174. Heralić A, Christiansson A-K, Ottosson M, Lennartson B (2010) Increased stability in laser metal wire deposition through feedback from optical measurements. Opt Lasers Eng 48:478–485

    Article  Google Scholar 

  175. Heralić A, Christiansson A-K, Lennartson B (2012) Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt Lasers Eng 50:1230–1241

    Article  Google Scholar 

  176. Tang L, Landers RG (2011) Layer-to-layer height control for laser metal deposition process. J Manuf Sci Eng [Internet]. 2011 [cited 2022 Dec 2];133. Available from: https://doi.org/10.1115/1.4003691

  177. Biegler M, Graf B, Rethmeier M (2018) In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations. Addit Manuf 20:101–110

    Google Scholar 

  178. Heigel JC, Michaleris P, Palmer TA (2015) In situ monitoring and characterization of distortion during laser cladding of Inconel® 625. J Mater Process Technol 220:135–145

    Article  CAS  Google Scholar 

  179. van Bohemen SMC, Hermans MJM, den Ouden G (2001) Monitoring of martensite formation during welding by means of acoustic emission. J Phys D: Appl Phys 34:3312

    Article  Google Scholar 

  180. Gaja H, Liou F (2017) Defects monitoring of laser metal deposition using acoustic emission sensor. Int J Adv Manuf Technol 90:561–574

    Article  Google Scholar 

  181. Ma Y, Hu Z, Tang Y, Ma S, Chu Y, Li X et al (2020) Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire + arc additive manufacturing. Addit Manuf 31:100956

    CAS  Google Scholar 

  182. Xu F, Madhaven N, Dhokia V, McAndrew AR, Colegrove PA, Williams S et al, Multi-sensor system for wire-fed additive manufacture of titanium alloys, 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Moussaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Peindray d’Ambelle, L., Moussaoui, K., Mabru, C. (2024). Instrumentation and Monitoring of Additive Manufacturing Processes for the Biomedical Applications. In: Mahajan, A., Devgan, S., Zitoune, R. (eds) Additive Manufacturing of Bio-implants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6972-2_5

Download citation

Publish with us

Policies and ethics