Skip to main content

Stem Cell Differentiation Mediated by Biomaterials/Surfaces

  • Chapter
  • First Online:
Polymeric Biomaterials for Tissue Regeneration
  • 103 Accesses

Abstract

Directing the differentiation of stem cells into a specific stromal lineage such as adipocyte, chondrocyte, fibroblast, myocyte, and osteoblast cell is a key and important step for medical uses. However, the uncontrolled and inefficient proliferative and differentiation behaviors of stem cells are still the significant challenges. Since the stem cell fate is strongly determined by the characteristics of the microenvironment in vitro, the biomaterials/surfaces constructs in two-dimensional or three-dimensional (3D) artificial structures could offer the several biological, mechanical, and chemical cues to modulate the cellular proliferation, and most importantly lineage particular differentiation. Besides these regulation cues, adding growth components existing in the ECM also holds the potential for guiding the stem cell fate in vitro. Therefore, this chapter aims to provide an update on the influencing cues that are being explored to govern stem cell fate, with a focus on the differentiation of bone marrow-derived mesenchymal stem cells (MSCs). The factors discussed here include topography, porosity and pore size, stiffness, hierarchy structure, chemical properties, and genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Blastocysts embryonic stem cell lines derived from human. Science. 1998;282(5391):1145–7.

    Article  PubMed  Google Scholar 

  2. Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.

    Article  PubMed  Google Scholar 

  3. http://stemcells.nih.gov/staticresources/info/basics/.

  4. Sundelacruza S, Kaplana DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009;20(6):646–55.

    Article  Google Scholar 

  5. Dawson JI, Oreffo ROC. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys. 2008;473:124–31.

    Article  PubMed  Google Scholar 

  6. Rao BM, Zandstra PW. Culture development for human embryonic stem cell propagation: molecular aspects and challenges. Curr Opin Biotechnol. 2005;16:568–76.

    Article  PubMed  Google Scholar 

  7. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.

    Article  PubMed  Google Scholar 

  8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  Google Scholar 

  9. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115(3):281–92.

    Article  PubMed  Google Scholar 

  10. Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009;27:1050–6.

    Article  PubMed  Google Scholar 

  11. Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res. 2011;30(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Qu X, Zhao R. Clinical applications of mesenchymal stem cells. J Hematol Oncol. 2012;5(19):1–9.

    Google Scholar 

  13. Branch MJ, Hashmani K, Dhillon P, Jones DR, Dua HS, Hopkinson A. Mesenchymal stem cells in the human corneal limbal stroma. Invest Ophthalmol Vis Sci. 2012;53(9):5109–16.

    Article  PubMed  Google Scholar 

  14. Brighton CT, Hunt RM. Early histologic and ultrastructural changes in microvessels of periosteal callus. J Orthop Trauma. 1997;11(4):244–53.

    Article  PubMed  Google Scholar 

  15. Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. 2012;18(2):128–34.

    Article  PubMed  Google Scholar 

  16. Zaman WS, Makpol S, Sathapan S, Chua KH. Long-term in vitro expansion of human adipose-derived stem cells showed low risk of tumourigenicity. J Tissue Eng Regen Med. 2014;8:67–76.

    Article  PubMed  Google Scholar 

  17. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tanna T, Sachan V. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther. 2014;9(6):513–21.

    Article  PubMed  Google Scholar 

  19. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.

    Article  PubMed  Google Scholar 

  20. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.

    Article  PubMed  Google Scholar 

  21. Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater. 2003;2(11):715–25.

    Article  PubMed  Google Scholar 

  22. Moghaddam MJ, Matsuda T. Molecular design of three-dimensional artificial extracellular matrix: photosensitive polymers containing cell adhesive peptide. J Polym Sci Pt A Polym Chem. 1993;31(6):1589–97.

    Article  Google Scholar 

  23. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77.

    Article  PubMed  Google Scholar 

  24. Freeman S. Biological science. 2nd ed. Hoboken, NJ: Pearson Prentice Hall; 2005.

    Google Scholar 

  25. Trappmann B, Gautrot JE, Connelly JT, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11(7):642–9.

    Article  PubMed  Google Scholar 

  26. Badylak SF, Freytes DO, Gilbert TW. Reprint of: extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2015;23:S17–26.

    Article  PubMed  Google Scholar 

  27. Grazyna K, Victoria K-B. Galactose-specific receptors on liver cells. I. Hepatocyte and liver macrophage receptors differ in their membrane anchorage. Biochim Biophys Acta. 1985;847(1):108–14.

    Article  Google Scholar 

  28. Rape AD, Zibinsky M, Murthy N, Kumar S. A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Nat Commun. 2015;6:8129.

    Article  PubMed  Google Scholar 

  29. Navaro Y, Bleich-Kimelman N, Hazanov L, et al. Matrix stiffness determines the fate of nucleus pulposus–derived stem cells. Biomaterials. 2015;49:68–76.

    Article  PubMed  Google Scholar 

  30. Mann BK, Gobin AS, Tsai AT, et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials. 2001;22(22):3045–51.

    Article  PubMed  Google Scholar 

  31. Cambria E, Renggli K, Ahrens CC, et al. Covalent modification of synthetic hydrogels with bioactive proteins via sortase-mediated ligation. Biomacromolecules. 2015;16(8):2316–26.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67(2):531–7.

    Article  PubMed  Google Scholar 

  33. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.

    Article  PubMed  Google Scholar 

  34. Girotti A, Reguera J, Rodríguez-Cabello JC, et al. Design and bioproduction of a recombinant multi (bio) functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J Mater Sci Mater Med. 2004;15(4):479–84.

    Article  PubMed  Google Scholar 

  35. Loo Y, Lakshmanan A, Ni M, et al. Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett. 2015;15(10):6919–25.

    Article  PubMed  Google Scholar 

  36. Bhowmick S, Scharnweber D, Koul V. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: in vitro study. Biomaterials. 2016;88:83–96.

    Article  PubMed  Google Scholar 

  37. Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12(12):3405–16.

    Article  PubMed  Google Scholar 

  38. Khetan S, Guvendiren M, Legant WR, et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater. 2013;12(5):458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials. 2008;29(18):2757–66.

    Article  PubMed  Google Scholar 

  40. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001;2:793–805.

    Article  PubMed  Google Scholar 

  41. Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control. Nat Cell Biol. 1999;1:E131–8.

    Article  PubMed  Google Scholar 

  42. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43:55–62.

    Article  PubMed  Google Scholar 

  43. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7:265–75.

    Article  PubMed  Google Scholar 

  45. Ana BF, Stefanie GL, Markus R, Mirren C, Tolga G, Katharina MW, Nicholas DS, Rui LR, Marcus T, Nuno MN. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. 2014;35:9023–32.

    Article  Google Scholar 

  46. Elias CN, Oshida Y, Lima JHC, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1(3):234–42.

    Article  PubMed  Google Scholar 

  47. Hefti T, Frischherz M, Spencer ND, Hall H, Schlottig F. A comparison of osteoclast resorption pits on bone with titanium and zirconia surfaces. Biomaterials. 2010;31(28):7321–31.

    Article  PubMed  Google Scholar 

  48. Yeo A, Wong WJ, Khoo HH, Teoh SH. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization. J Biomed Mater Res A. 2010;92(1):311–21.

    Article  PubMed  Google Scholar 

  49. Liu Q, Wang W, Zhang L, Zhao L, Song W, Duan X, Zhang Y. Involvement of N-cadherin/b-catenin interaction in the micro/nanotopography induced indirect mechanotransduction. Biomaterials. 2014;35:6206–18.

    Article  PubMed  Google Scholar 

  50. Seo C, Jeong H, Feng Y, et al. Micropit surfaces designed for accelerating osteogenic differentiation of murine mesenchymal stem cells via enhancing focal adhesion and actin polymerization. Biomaterials. 2014;35:2245–52.

    Article  PubMed  Google Scholar 

  51. Wang PY, Li WT, Yu J, Tsai WB. Modulation of osteogenic, adipogenic and myogenic differentiation of mesenchymal stem cells by submicron grooved topography. J Mater Sci Mater Med. 2012;23(12):3015–28.

    Article  PubMed  Google Scholar 

  52. Wang P-Y, Yu J, Lin J-H, Tsai W-B. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 2011;7:3285–93.

    Article  PubMed  Google Scholar 

  53. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography- induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31:1299–306.

    Article  PubMed  Google Scholar 

  54. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107:4872–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res. 2007;313:22–37.

    Article  PubMed  Google Scholar 

  56. Tang W, Lin D, Yu YM, Niu HY, Guo H, Yuan Y, Liu CS. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 2016;32:309–23.

    Article  PubMed  Google Scholar 

  57. Gwendolen CR, Adam JE. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43:55–62.

    Article  Google Scholar 

  58. Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CDW, Curtis ASG. Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int J Biochem Cell Biol. 2004;36(10):2005–15.

    Article  PubMed  Google Scholar 

  59. Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26(26):5405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yim EK, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res. 2007;313(9):1820–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Doyle AD, Wang FW, Matsumoto K, Yamada KM. One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol. 2009;184(4):481–90.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997–1003.

    Article  PubMed  Google Scholar 

  63. Zhao L, Liu L, Wu Z, Zhang Y, Chu PK. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials. 2012;33:2629–41.

    Article  PubMed  Google Scholar 

  64. Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–82.

    Article  PubMed  Google Scholar 

  65. Liu Y, Manjubala I, Roschger P, Epari DR, Schell H, Lienau J, Bail HJ, Duda GN, Fratzl P. Characteristics of mineral particles in the callus during fracture healing in a sheep model. Calcif Tissue Int. 2008;82:S69–70.

    Google Scholar 

  66. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J. 2002;83:1650–60.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sabetrasekh R, Tiainen H, Lyngstadaas SP, Reseland J, Haugen H. A novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl. 2011;25(6):559–80.

    Article  PubMed  Google Scholar 

  68. Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13:979–87.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cyster L, Grant D, Howdle S, Rose F, Irvine D, Freeman D, Scotchford C, Shakesheff K. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials. 2005;26:697–702.

    Article  PubMed  Google Scholar 

  70. Edwards SL, Werkmeister JA. Mechanical evaluation and cell response of woven polyetheretherketone scaffolds. J Biomed Mater Res A. 2012;100(12):3326–31.

    Article  PubMed  Google Scholar 

  71. Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci. 2001;46:273–82.

    Article  Google Scholar 

  72. Kumara A, Nunea KC, Murra LE, Misra RDK. Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. Int Mater Rev. 2016;16(1):20–40.

    Article  Google Scholar 

  73. Sun T, Donoghue PS, Higginson JR, Gadegaard N, Barnett SC, Riehle MO. The interactions of astrocytes and fibroblasts with defined pore structures in static and perfusion cultures. Biomaterials. 2011;32(8):2021–31.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10(2):111–20.

    Article  PubMed  Google Scholar 

  75. Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30(15):2956–65.

    Article  PubMed  Google Scholar 

  76. Berger M, Probst F, Schwartz C, Cornelsen M, Seitz H, Ehrenfeld M, Otto S. A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty. J Craniomaxillofac Surg. 2015;43(6):830–6.

    Article  PubMed  Google Scholar 

  77. Nam J, Johnson J, Lannutti JJ, Agarwala S. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater. 2011;7(4):1516–24.

    Article  PubMed  Google Scholar 

  78. Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5(2):670–9.

    Article  PubMed  Google Scholar 

  79. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Akay G, Birch MA, Bokhari MA. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials. 2004;25(18):3991–4000.

    Article  PubMed  Google Scholar 

  81. Ahn G, Kim Y, Lee S-W, Jeong Y, Son H, Lee D. Effect of heterogeneous multi-layered gelatin scaffolds on the diffusion characteristics and cellular activities of preosteoblasts. Macromol Res. 2014;22:99–107.

    Article  Google Scholar 

  82. Im GI, Ko JY, Lee JH. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size. Cell Transplant. 2012;21(11):2397–405.

    Article  PubMed  Google Scholar 

  83. Carlier A, van Gastel N, Geris L, Carmeliet G, Van Oosterwyck H. Size does matter: an integrative in vivo-in silico approach for the treatment of critical size bone defects. PLoS Comput Biol. 2014;10(11):e1003888.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mygind T, Stiehler M, Baatrup A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28:1036–104.

    Article  PubMed  Google Scholar 

  85. Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int. 2015;2015:167025.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lee JH, Lee SJ, Khang G, Lee HB. Interaction of fibroblasts on polycarbonate membrane surfaces with different micropore sizes and hydrophilicity. J Biomater Sci Polym Ed. 1999;10(3):283–94.

    Article  PubMed  Google Scholar 

  87. Guo H, Su J, Wei J, Kong H, Liu C. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 2009;5(1):268–78.

    Article  PubMed  Google Scholar 

  88. Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26(17):3565–75.

    Article  PubMed  Google Scholar 

  89. Kruyt MC, Wilson CE, de Bruijn JD, van Blitterswijk CA, Oner CF, Verbout AJ, Dhert WJ. The effect of cell-based bone tissue engineering in a goat transverse process model. Biomaterials. 2006;27(29):5099–106.

    Article  PubMed  Google Scholar 

  90. Chan CK, Kumar TS, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Nanomedicine (Lond). 2006;1(2):177–88.

    Article  PubMed  Google Scholar 

  91. Prall WC, Haasters F, Heggebö J, Polzer H, Schwarz C, Gassner C, Grote S, Anz D, Jäger M, Mutschler W, Schieker M. Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation. Biochem Biophys Res Commun. 2013;440(4):617–22.

    Article  PubMed  Google Scholar 

  92. Peyton SR, Kalcioglu ZI, Cohen JC, Runkle AP, Van Vliet KJ, Lauffenburger DA, Griffith LG. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol Bioeng. 2011;108(5):1181–93.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016;61:922–39.

    Article  PubMed  Google Scholar 

  94. Kim JS, Cha JK, Cho AR, Kim MS, Lee JS, Hong JY, Choi SH, Jung UW. Acceleration of bone regeneration by BMP-2-loaded collagenated biphasic calcium phosphate in rabbit sinus. Clin Implant Dent Relat Res. 2015;17(6):1103–13.

    Article  PubMed  Google Scholar 

  95. Lan Levengood SK, Polak SJ, Poellmann MJ, et al. The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity. Acta Biomater. 2010;6(8):3283–91.

    Article  PubMed  Google Scholar 

  96. Yanagisawa T, Tsuneo S, Shimizu T, Kuroda K, Kato C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn. 1990;63:988–92.

    Article  Google Scholar 

  97. Simovic S, Ghouchi-Eskandar N, Sinn AM, Losic D, Prestidge CA. Silica materials in drug delivery applications. Curr Drug Discov Technol. 2011;8(3):269–76.

    Article  PubMed  Google Scholar 

  98. Izquierdo-Barbaa I, Ruiz-Gonzálezb L, Doadrioa JC. Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 2005;8:983–9.

    Article  Google Scholar 

  99. Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A. 2004;68(4):640–50.

    Article  PubMed  Google Scholar 

  100. Yun HS, Kim SH, Khang D, Choi J, Kim HH, Kang M. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Int J Nanomedicine. 2011;6:2521–31.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhu Y, Kaskel S. Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous Mesoporous Mater. 2009;118(1-3):176–82.

    Article  Google Scholar 

  102. Termine JD, Eanes ED. Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res. 1972;10(3):171–97.

    Article  PubMed  Google Scholar 

  103. Xia W, Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J Non Crystall Solids. 2008;354(12):1338–41.

    Article  Google Scholar 

  104. Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater. 2016;104:1248. https://doi.org/10.1002/jbm.b.33443.

    Article  PubMed  Google Scholar 

  105. Horcajada P, Ramila A, Boulahya K, Gonzalez-Calbet J, Vallet-Regi M. Bioactivity in ordered mesoporous materials. Solid State Sci. 2004;X6:1295–300.

    Article  Google Scholar 

  106. Aghaeia H, Nourbakhshb AA, Karbasic S, et al. Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery. Ceram Int. 2014;40(5):7355–62.

    Article  Google Scholar 

  107. Yan X, Deng H, Huang X, et al. Mesoporous bioactive glasses. I. Synthesis and structural characterization. J Non Crystall Solids. 2015;10:3209–17.

    Google Scholar 

  108. Bae WC, Law AW, Amiel D, Sah RL. Sensitivity of indentation testing to step-off edges and interface integrity in cartilage repair. Ann Biomed Eng. 2004;32(3):360–9.

    Article  PubMed  Google Scholar 

  109. Zhang H, Landmann F, Zahreddine H, et al. A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature. 2011;471(7336):99–103.

    Article  PubMed  Google Scholar 

  110. Okolicsanyi RK, Griffiths LR, Haupt LM. Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. Dev Biol. 2014;388(1):1–10.

    Article  PubMed  Google Scholar 

  111. Eroshenko N, Ramachandran R, Yadavalli VK, Rao RR. Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng. 2013;7(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hosseinkhani M, Shirazi R, Rajaei F, Mahmoudi M, Mohammadi N, Abbasi M. Engineering of the embryonic and adult stem cell niches. Iran Red Crescent Med J. 2013;15(2):83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhao W, Li X, Liu X, Zhang N, Wen X. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2014;40:316–23.

    Article  PubMed  Google Scholar 

  114. Yilgor P, Sousa RA, Reis RL, et al. 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromol Symp. 2008;269:92–9.

    Article  Google Scholar 

  115. Her GJ, Wu HC, Chen MH, Chen MY, Chang SC, Wang TW. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater. 2013;9(2):5170–80.

    Article  PubMed  Google Scholar 

  116. Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13(10):979–87.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wang L-S, Boulaire J, Chan PPY, Chung JE, Kurisawa M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials. 2010;31(33):8608–16.

    Article  PubMed  Google Scholar 

  118. Wang P-Y, Tsai W-B, Voelcker NH. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater. 2012;8(2):519–30.

    Article  PubMed  Google Scholar 

  119. Flanagan LA, Ju YE, Marg B, et al. Janmey Neurite branching on deformable substrates. Neuroreport. 2002;13:2411–5.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kim TH, An DB, Oh SH, et al. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors. Biomaterials. 2015;40:51–60.

    Article  PubMed  Google Scholar 

  121. Li Z, Gong Y, Sun S, et al. Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials. 2013;34(31):7616–25.

    Article  PubMed  Google Scholar 

  122. Rowlands AS, George PA, Cooper-White JJ. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol. 2008;295(4):C1037–44.

    Article  PubMed  Google Scholar 

  123. Evans ND, Minelli C, Gentleman E, et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater. 2009;18:1–13.

    Article  PubMed  Google Scholar 

  124. Tse JR, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PloS One. 2011;6(1):e15978.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ghosh K, Pan Z, Guan E, et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials. 2007;28(4):671–9.

    Article  PubMed  Google Scholar 

  126. Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J. 2009;97(5):1313–22.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Du J, Chen X, Liang X, et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci U S A. 2011;108(23):9466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res. 2011;26(4):730–8.

    Article  PubMed  Google Scholar 

  129. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60:24–34.

    Article  PubMed  Google Scholar 

  130. Jiang L, Sun Z, Chen X, et al. Cells sensing mechanical cues: stiffness influences the lifetime of cell-extracellular matrix interactions by affecting the loading rate. ACS Nano. 2016;10(1):207–17.

    Article  PubMed  Google Scholar 

  131. Albro MB, Chahine NO, Li R, Yeager K, Hung CT, Ateshian GA. Dynamic loading of deformable porous media can induce active solute transport. J Biomech. 2008;41:3152–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. García AJ. Get a grip: integrins in cell-biomaterial interactions. Biomaterials. 2005;26:7525–9.

    Article  PubMed  Google Scholar 

  133. Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213:565–73.

    Article  PubMed  Google Scholar 

  134. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    Article  PubMed  Google Scholar 

  135. García AJ, Boettiger D. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials. 1999;20:2427–33.

    Article  PubMed  Google Scholar 

  136. Dumbauld DW, Michael KE, Hanks SK, García AJ. Focal adhesion kinasedependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biol Cell. 2010;102:203–13.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A. 2003;66:247–59.

    Article  PubMed  Google Scholar 

  138. Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J Cell Biol. 2002;159:695–705.

    Article  PubMed  PubMed Central  Google Scholar 

  139. ter Brugge PJ, Torensma R, De Ruijter JE, Figdor CG, Jansen JA. Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. Tissue Eng. 2002;8:615–26.

    Article  PubMed  Google Scholar 

  140. Khang D, Kim SY, Liu-Snydera P, Palmore GT, Durbinc SM, Webster TJ. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007;28:4756–68.

    Article  PubMed  Google Scholar 

  141. Rodriguez JP, Gonzalez M, Rios S, Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem. 2004;93:721–31.

    Article  PubMed  Google Scholar 

  142. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  PubMed  Google Scholar 

  143. Khang D, Choi J, Im YM, Kim YJ, Jang JH, Park JW, et al. Role of subnano-, nano and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials. 2012;33:5997–6007.

    Article  PubMed  Google Scholar 

  144. Leitinger B, McDowall A, Stanley P, Hogg N. The regulation of integrin function by Ca2+. Biochim Biophys Acta. 2000;1498:91–8.

    Article  PubMed  Google Scholar 

  145. Baneres JL, Roquet F, Martin A, Parello J. A minimized human integrin alpha 5 beta 1 that retains ligand recognition. J Biol Chem. 2000;275:5888–903.

    Article  PubMed  Google Scholar 

  146. Grzesiak J, Davis G, Kirchhofer D, Pierschbacher M. Regulation of alpha 2 beta 1-mediated fibroblast migration on type I collagen by shifts in the concentrations of extracellular Mg2+ and Ca2+. J Cell Biol. 1992;117(5):1109–17.

    Article  PubMed  Google Scholar 

  147. Zhang J, MaXY LD, Shi HS, Yuan Y, Tang W, Zhou HJ, Guo H, Qian JC, Liu CS. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251–64.

    Article  PubMed  Google Scholar 

  148. Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials. 2013;34:6589–606.

    Article  PubMed  Google Scholar 

  149. Curran JM, Chen R, Hunt JA. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials. 2005;34:7057–67.

    Article  Google Scholar 

  150. Viswanathan P, Chirasatitsin S, Ngamkham K, Engler AJ, Battaglia G. Cell instructive microporous scaffolds through interface engineering. J Am Chem Soc. 2012;134(49):20103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Dee KC, Anderson TT, Bizios R. Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res. 1998;40:371–7.

    Article  PubMed  Google Scholar 

  152. Rezania A, Johnson R, Lefkow AR, Healy KE. Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir. 1999;15:6931–9.

    Article  Google Scholar 

  153. Xiao S-J, Textir M, Spencer ND. Covalent attachment of celladhesive (Arg-Gly-Asp)-containing peptides to titanium surface. Langmuir. 1998;14:5507–16.

    Article  Google Scholar 

  154. Massia SP, Hubbell JA. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann N Y Acad Sci. 1990;589:261–70.

    Article  PubMed  Google Scholar 

  155. Sugawara T, Matsuda T. Photochemical surface derivatization of a peptide containing Arg-Gly-Asp (RGD). J Biomed Mater Res. 1995;29:1047–52.

    Article  PubMed  Google Scholar 

  156. Houseman BT, Mrksich M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials. 2001;22:943–55.

    Article  PubMed  Google Scholar 

  157. Bearinger JP, Castner DG, Healy KE. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression. J Biomater Sci Polym Ed. 1998;9:629–52.

    Article  PubMed  Google Scholar 

  158. Kao WJ, Lee D, Schense JC, Hubbell JA. Fibronectin modulates macrophage adhesion and FBGC formation: the role of RGD, PHSRN, and PRRARV domains. J Biomed Mater Res. 2000;55:79–88.

    Article  Google Scholar 

  159. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials. 2005;26(30):5991–8.

    Article  PubMed  Google Scholar 

  160. Cao FY, Yin WN, Fan JX, Tao L, Qin SY, Zhuo RX, Zhang XZ. Evaluating the effects of charged oligopeptide motifs coupled with rgd on osteogenic differentiation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2015;7(12):6698–705.

    Article  PubMed  Google Scholar 

  161. Chien HW, Fu SW, Shih AY, Tsai WB. Modulation of the stemness and osteogenic differentiation of human mesenchymal stem cells by controlling RGD concentrations of poly(carboxybetaine) hydrogel. Biotechnol J. 2014;9(12):1613–23.

    Article  PubMed  Google Scholar 

  162. Wang X, Li SY, Yan C, Liu P, Ding JD. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015;15(3):1457–67.

    Article  PubMed  Google Scholar 

  163. Brandt K, Wolff MF, Salikov V, Heinrich S, Schneider GA. A novel method for a multi-level hierarchical composite with brick-and-mortar structure. Sci Rep. 2013;3:2322.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Thiagarajan G, Deshmukh K, Wang Y, Misra A, Katz JL, Spencer P. Nano finite element modeling of the mechanical behavior of biocomposites using multi-scale (virtual internal bond) material models. J Biomed Mater Res A. 2007;83(2):332–44.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:290602.

    Article  Google Scholar 

  166. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev. 2010;16(5):523–39.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cabanas-Polo S, Philippart A, Boccardi E, et al. Facile production of porous bioactive glass scaffolds by the foam replica technique combined with sol-gel/electrophoretic deposition. Ceram Int. 2016;42(5):5772–7.

    Article  Google Scholar 

  168. Yun HS, Kim SE, Hyeon YT. Design and preparation of bioactive glasses with hierarchical porenetworks. Chem Commun. 2007;21:2139–41.

    Article  Google Scholar 

  169. Li X, Wang X, Chen H, Shi J. Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 contemplated approach. Chem Mater. 2007;19(17). https://doi.org/10.1021/cm0708564.

  170. Zhu M, Zhang J, Zhou Y, et al. Preparation and characterization of magnetic mesoporous bioactive glass/carbon composite scaffolds. J Chem. 2013;2013:893479.

    Article  Google Scholar 

  171. Dorozhkin SV. Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter. 2011;1(1):3–56.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Esen S, Bor ET, Bor S. Characterization of loose powder sintered porous titanium and Ti6Al4V alloy. Turk J Eng Environ Sci. 2009;33:207–19.

    Google Scholar 

  173. Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int J Biomater. 2012;2012:245727.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mitra J, Tripathi G, Sharmaaand A, Basu B. Scaffolds for bone tissue engineering: role of surfacepatterning on osteoblast response. RSC Adv. 2013;3:11073–94.

    Article  Google Scholar 

  175. Zheng W, Zhang W, Jiang X. Precise control of cell adhesion by combination of surface chemistry and soft lithography. Adv Healthc Mater. 2013;2(1):95–108.

    Article  PubMed  Google Scholar 

  176. Kim DH, Han K, Gupta K, et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials. 2009;30(29):5433–44.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Uttayarat P, Chen M, Li M, et al. Microtopography and flow modulate the direction of endothelial cell migration. Am J Physiol Heart Circ Physiol. 2008;294(2):H1027–35.

    Article  PubMed  Google Scholar 

  178. Lee MR, Kwon KW, Jung H, et al. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials. 2010;31(15):4360–6.

    Article  PubMed  Google Scholar 

  179. Baker DW, Liu X, Weng H, Luo C, Tang L. Fibroblast/fibrocyte: surface interaction dictates tissue reactions to micropillar implants. Biomacromolecules. 2011;12(4):997–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ng CK, Yu KN. Proliferation of epithelial cells on PDMS substrates with micropillars fabricated with different curvature characteristics. Biointerphases. 2012;7:21.

    Article  PubMed  Google Scholar 

  181. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997;18(18):1201–25.

    Article  PubMed  Google Scholar 

  182. Amsden B. Novel biodegradable polymers for local growth factor delivery. Eur J Pharm Biopharm. 2015;97(Pt B):318–28.

    Article  PubMed  Google Scholar 

  183. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.

    Article  PubMed  Google Scholar 

  184. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.

    Article  PubMed  Google Scholar 

  185. Xiao Y, Reis LA, Zhao Y, Radisic M. Modifications of collagen-based biomaterials with immobilized growth factors or peptides. Methods. 2015;84:44–52.

    Article  PubMed  Google Scholar 

  186. Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci. 2012;13(5):6053–72.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Iwamoto R, Mekada E. Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev. 2000;11(4):335–44.

    Article  PubMed  Google Scholar 

  188. Pagès G, Pouysségur J. Transcriptional regulation of the vascular endothelial growth factor gene—a concert of activating factors. Cardiovasc Res. 2005;65(3):564–73.

    Article  PubMed  Google Scholar 

  189. Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: specificity, activation and inhibition. Cytokine Growth Factor Rev. 2016;27:13–34.

    Article  PubMed  Google Scholar 

  190. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem. 2004;93:93–103.

    Article  PubMed  Google Scholar 

  191. Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1997;79:1452–63.

    Article  PubMed  Google Scholar 

  192. Louwerse RT, Heyligers IC, Klein-Nulend J, et al. Use of recombinant human osteogenic protein-1 for the repair of subchondral defects in articular cartilage in goats. J Biomed Mater Res. 2000;49:506–16.

    Article  PubMed  Google Scholar 

  193. Liu H, Peng H, Wu Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34:4404–17.

    Article  PubMed  Google Scholar 

  194. Lecanda F, Avioli LV, Cheng S-L. Regulation of bone matrix protein expression and induction of differentation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J Cell Biochem. 1997;67:386–9.

    Article  PubMed  Google Scholar 

  195. Nauth A, Ristiniemi J, McKee MD, Schemitsch EH. Bone morphogenetic proteins in open fractures: past, present, future. Injury. 2009;40(Suppl. 3):S27–31.

    Article  PubMed  Google Scholar 

  196. Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:110–4.

    Article  Google Scholar 

  197. La WG, Park S, Yoon HH. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small. 2013;9(23):4051–60.

    Article  PubMed  Google Scholar 

  198. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–404.

    Article  PubMed  Google Scholar 

  199. Chappard D, Aguado E, Hure G, et al. The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3 and 6 months study in sheep. Int J Oral Maxillofac Implants. 1999;14:189–96.

    PubMed  Google Scholar 

  200. Hall J, Sorensen RG, Wozney JM, Wikesjo UM. Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. J Clin Periodontol. 2007;34:444–51.

    Article  PubMed  Google Scholar 

  201. Kim D, Herr AE. Protein immobilization techniques for microfluidic assays. Biomicrofluidics. 2013;7(4):41501(1-47).

    Article  Google Scholar 

  202. Hong J, Shah NJ, Drake AC, DeMuth PC, Lee JB, Chen J, Hammond PT. Graphene multilayers as gates for multi-week sequential release of proteins from surfaces. ACS Nano. 2012;6(1):81–8.

    Article  PubMed  Google Scholar 

  203. Rosario C, Rodriguez-Evora M, Reyes R. valuation of nanostructure and microstructure of bone regenerated by BMP-2-porous scaffolds. Biomed Mater. 2015;103(9):2998–3011.

    Article  Google Scholar 

  204. Qin J, He H, Zhang W, Chen F, Liu C. Effective incorporation of rhBMP-2 on implantable titanium disks with microstructures by using electrostatic spraying deposition. RSC Adv. 2016;6:51914–23.

    Article  Google Scholar 

  205. Reed S, Wu B. Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng. 2014;42(7):1528–36.

    Article  PubMed  Google Scholar 

  206. Foldbjerg R, Dang D, AAutrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, a549. Arch Toxicol. 2011;85:743–50.

    Article  PubMed  Google Scholar 

  207. Tian Y, Li Z, Zhang W, et al. Size-mediated adsorption dynamics, conformation and bioactivity of bone morphogenetic protein-2 onto silica nanoparticles. J Nanosci Nanotechnol. 2016;16:5528–36.

    Article  Google Scholar 

  208. Li ZY, Gan Q, Zhang WJ, et al. Surface-induced conformational and functional changes of bone morphogenetic protein-2 adsorbed onto single-walled carbon nanotubes. Biochem Biophys Res Commun. 2013;440:215–21.

    Article  PubMed  Google Scholar 

  209. Huang B, Yuan Y, Ding S, et al. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of bmp receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomater. 2015;27:275–85.

    Article  PubMed  Google Scholar 

  210. Lin D, Chai Y, Ma Y, et al. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold. Biomaterials. 2017;196:122–37.

    Article  PubMed  Google Scholar 

  211. Cai L, Lin D, Chai Y, et al. MBG scaffolds containing chitosan microspheres for binary delivery of IL-8 and BMP-2 for bone regeneration. J Mater Chem B. 2018;6:4453–65.

    Article  PubMed  Google Scholar 

  212. Kang Y, Kim S, Khademhosseini A, Yang Y. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials. 2011;32:6119–30.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials. 2007;28:2763–71.

    Article  PubMed  Google Scholar 

  214. Mercado AE, Ma J, He X, Jabbari E. Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles. J Control Release. 2009;140:148–56.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Shen H, Hu X, Yang F, Bei J, Wang S. The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds. Biomaterials. 2009;30:3150–7.

    Article  PubMed  Google Scholar 

  216. Hoang QQ, Sicheri F, Howard AJ, Yang DS. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature. 2003;425:977–80.

    Article  PubMed  Google Scholar 

  217. Mi L, Giarmarco MM, Shao Q, Jiang S. Divalent cation-mediated polysaccharide interactions with zwitterionic surfaces. Biomaterials. 2012;33:2001–6.

    Article  PubMed  Google Scholar 

  218. Zhang Y, Jiang T, Zheng Y, Zhou P. Interference of EGCG on the Zn(II)-induced conformational transition of silk fibroin as a model protein related to neurodegenerative diseases. Soft Matter. 2012;8:5543–9.

    Article  Google Scholar 

  219. Zhang W, He H, Tian Y, Gan Q, Zhang J, Yuan Y, et al. Calcium ion-induced formation of beta-sheet/-turn structure leading to alteration of osteogenic activity of bone morphogenetic protein-2. Sci Rep. 2015;5:12694–700.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Zhang W, Tian Y, He H, et al. Strontium attenuates rhBMP-2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway. Acta Biomater. 2016;33:290–300.

    Article  PubMed  Google Scholar 

  221. Lee K-S, Kim H-J, Li Q-L, Chi X-Z, Ueta C, Komori T, et al. Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20:8783–92.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Li J, Khavandgar Z, Lin S-H, Murshed M. Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism. Bone. 2011;48:321–31.

    Article  PubMed  Google Scholar 

  223. Barradas AM, Fernandes HA, Groen N, Chai YC, Schrooten J, van de Peppel J, van Leeuwen JP, van Blitterswijk CA, de Boer J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cell. Biomaterials. 2012;33(11):3205–15.

    Article  PubMed  Google Scholar 

  224. Shih Y-RV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci U S A. 2014;111:990–5.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Ren X, Bischoff D, Weisgerber DW, Lewis MS, Tu V, Yamaguchi DT, et al. Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway. Biomaterials. 2015;50:107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Verberckmoes SC, De Broe ME, D'Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int. 2003;64:534–43.

    Article  PubMed  Google Scholar 

  227. Xin Y, Jiang J, Huo K, Hu T, Chu PK. Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano. 2009;3:3228–34.

    Article  PubMed  Google Scholar 

  228. Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sørensen S, et al. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials. 2013;34:5883–90.

    Article  PubMed  Google Scholar 

  229. Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34:19–29.

    Article  PubMed  Google Scholar 

  230. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42:129–38.

    Article  PubMed  Google Scholar 

  231. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenicdifferentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29:981–91.

    Article  PubMed  Google Scholar 

  232. Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem. 2009;23:165–74.

    Article  PubMed  Google Scholar 

  233. Takada T, Katagiri T, Ifuku M, Morimura N, Kobayashi M, Hasegawa K, et al. Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem. 2003;278:43229–35.

    Article  PubMed  Google Scholar 

  234. Bellows CG, Aubin JE, Heersche JN, Antosz ME. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int. 1986;38:143–54.

    Article  PubMed  Google Scholar 

  235. Rai B, Nurcombe V, Cool SM. Heparan sulfate-based treatments for regenerative medicine. Crit Rev Eukaryot Gene Expr. 2011;21:1–12.

    Article  PubMed  Google Scholar 

  236. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Rur J Biochem. 1996;237:295–302.

    Google Scholar 

  237. Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, Chung UI, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem. 2006;281:23246–53.

    Article  PubMed  Google Scholar 

  238. Kuo WJ, Digman MA, Lander AD. Heoaran sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol Biol Cell. 2010;21:4028–41.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Kanzaki S, Takahashi T, Kanno T, et al. Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor. J Cell Physiol. 2008;216:844–50.

    Article  PubMed  Google Scholar 

  240. Kanzaki S, Ariyoshi W, Takahashi T, et al. Dual effects of heparin on BMP-2-induced ostrogenic activity in MC3T3-E1 cells. Pharmacol Rep. 2011;63:1222–30.

    Article  PubMed  Google Scholar 

  241. Atha DH, Stephens AW, Rosenberg RD. Evaluation of critical groups required for the binding of heparin to antithrombin. Proc Natl Acad Sci U S A. 1984;81(4):1030–4.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Muir JM, Andrew M, Hirsh J, Weitz JI, Young E, Deschamps P, Shaughnessy SG. Histomorphometric analysis of the effects of standard heparin on trabecular bone in vivo. Blood. 1996;88(4):1314–20.

    Article  PubMed  Google Scholar 

  243. Goldhaber P. Heparin enhancement of factors stimulating bone resorption in tissue culture. Science. 1965;147:407–8.

    Article  PubMed  Google Scholar 

  244. Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.

    Article  PubMed  Google Scholar 

  245. Dombroeski C, Song SJ, Chuan P, et al. Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 2009;18(4):661–70.

    Article  Google Scholar 

  246. Bramono DS, Murali S, Rai B, et al. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone. 2012;50(4):954–64.

    Article  PubMed  Google Scholar 

  247. Takada T, Katagiri T, Ifuku M, et al. Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem. 2003;278(44):43229–35.

    Article  PubMed  Google Scholar 

  248. Degat MC, Dubreucq G, Meunier A. Enhancement of the biological activity of BMP-2 by synthetic dextran derivatives. J Biomed Mater Res A. 2009;88A(1):174–83.

    Article  Google Scholar 

  249. Zhou H, Qian J, Wang J, et al. Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials. 2009;30:1715–24.

    Article  PubMed  Google Scholar 

  250. Buttner M, Moller S, Keller M, et al. Over-sulfated chondroitin sulfate Derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signaling. J Cell Physiol. 2013;228(2):330–40.

    Article  PubMed  Google Scholar 

  251. Manton KJ, Leong DF, Cool SM, Nurcombe V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells. 2007;25:2845–54.

    Article  PubMed  Google Scholar 

  252. Kawano M, Ariyoshi W, Iwanaga K, et al. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid. Biochem Biophys Res Commun. 2011;405(4):575–80.

    Article  PubMed  Google Scholar 

  253. Kim J, Kim IS, Cho TH, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830–7.

    Article  PubMed  Google Scholar 

  254. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  Google Scholar 

  255. Derfoul A, Perkins GL, Hall DJ, Tuan RS. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells. 2006;24:1487–95.

    Article  PubMed  Google Scholar 

  256. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13:81–8.

    Article  PubMed  Google Scholar 

  257. Yuasa M, Yamada T, Taniyama T, et al. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PloS One. 2015;10(2):e0116462.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Lanqenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:117.

    Article  Google Scholar 

  259. Marcus J, Johannes F, Wiebke D, et al. Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. J Orthop Res. 2008;26(11):1440–8.

    Article  Google Scholar 

  260. Pera MF, Andrade J, Houssami S, et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci. 2004;117:1269–80.

    Article  PubMed  Google Scholar 

  261. Alborzinia H, Schmidt-Glenewinkel H, Ilkavets I, Breitkopf-Heinlein K, Cheng X, Hortschansky P, Dooley S, Wölfl S. Quantitative kinetics analysis of BMP2 uptake into cells and its modulation by BMP antagonists. J Cell Sci. 2013;126:117–27.

    Article  PubMed  Google Scholar 

  262. Kwong FN, Richardson SM, Evans CH. Chordin knockdown enhances the osteogenic differentiation of human mesenchymal stem cells. Arthritis Res Ther. 2008;10:R65.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Gazzerro E, Pereira RC, Jorgetti V, Olson S, Economides AN, Canalis E. Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology. 2005;146:655–65.

    Article  PubMed  Google Scholar 

  264. Schett G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Invest. 2011;41:1361–6.

    Article  PubMed  Google Scholar 

  265. Ritting AW, Weber EW, Lee MC. Exaggerated inflammatory response and bony resorption from BMP-2 use in a pediatric forearm nonunion. J Hand Surg Am. 2012;37:316–21.

    Article  PubMed  Google Scholar 

  266. Robin BN, Chaput CD, Zeitouni S, Rahm MD, Zerris VA, Sampson HW. Cytokine-mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: a case study. Spine (Phila Pa 1976). 2010;35:E1350–4.

    Article  PubMed  Google Scholar 

  267. Lee KB, Murray SS, Taghavi CE, Song KJ, Brochmann EJ, Johnson JS, et al. Bone morphogenetic protein-binding peptide reduces the inflammatory response to recombinant human bone morphogenetic protein-2 and recombinant human bone morphogenetic protein-7 in a rodent model of soft-tissue inflammation. Spine J. 2011;11:568–76.

    Article  PubMed  Google Scholar 

  268. Ratanavaraporn J, Furuya H, Tabata Y. Local suppression of pro-inflammatory cytokines and the effects in BMP-2-induced bone regeneration. Biomaterials. 2012;33:304–16.

    Article  PubMed  Google Scholar 

  269. Tan Y, Montgomery SR, Aghdasi BG, Inoue H, Kaner T, Tian H, et al. The effect of corticosteroid administration on soft-tissue inflammation associated with rhBMP-2 use in a rodent model of inflammation. Spine (Phila Pa 1976). 2013;38:806–13.

    Article  PubMed  Google Scholar 

  270. Huang RL, Yuan Y, Tu J, Zou GM, Li Q. Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation. Cell Death Dis. 2014;5:e1187.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Huang R-L, Chen G, Wang W, et al. Synergy between IL-6 and soluble IL-6 receptor enhances bone morphogenetic protein-2/absorbable collagen sponge-induced bone regeneration via regulation of BMPRIA distribution and degradation. Biomaterials. 2015;67:308–22.

    Article  PubMed  Google Scholar 

  272. Ratanavaraporn J, Furuya H, Kohara H, et al. Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenetic protein-2 from hydrogels on bone regeneration. Biomaterials. 2011;32(11):2797–811.

    Article  PubMed  Google Scholar 

  273. Kleinschmidt K, Ploeger F, Nickel J, et al. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 2013;34(24):5926–36.

    Article  PubMed  Google Scholar 

  274. Nakamura Y, Tensho K, Nakaya H, et al. Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice. Bone. 2005;36(3):399–407.

    Article  PubMed  Google Scholar 

  275. Wuertz K, Urban J, Klasen J, Ignatius A, Wilke HJ, Claes L, et al. Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells. J Orthop Res. 2007;25:1513–22.

    Article  PubMed  Google Scholar 

  276. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  PubMed  Google Scholar 

  277. Jiang C, Liu J, Zhao J, Xiao L, An S, Gou Y, et al. Effects of hypoxia on the immunomodulatory properties of human gingiva–derived mesenchymal stem cells. J Dental Res. 2015;94:69–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, H., Liu, C. (2023). Stem Cell Differentiation Mediated by Biomaterials/Surfaces. In: Gao, C. (eds) Polymeric Biomaterials for Tissue Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-99-6948-7_8

Download citation

Publish with us

Policies and ethics