Skip to main content

Machine Learning in Molecular Dynamics Simulation

  • Conference paper
  • First Online:
Proceedings of 2023 Chinese Intelligent Systems Conference (CISC 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1090))

Included in the following conference series:

  • 382 Accesses

Abstract

Molecular dynamics simulation is a powerful tool to study biological problems, such as protein-ligand binding, protein folding/unfolding, flexibility of biomolecules, free energy calculations, etc. It also plays an important role in drug design in identifying potential small molecules that binds to target. As the surging development of machine learning in recent years, many possibilities in molecular dynamics simulation become visible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)

    Article  Google Scholar 

  2. Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Chem. Phys. 23(3), 327–341 (1977)

    Google Scholar 

  3. Feller, S.E., Pastor, R.W., Rojnuckarin, A., Bogusz, S., Brooks, B.R.: Effect of electrostatic force truncation on interfacial and transport properties of water. J. Phys. Chem. 100(42), 17011–17020 (1996)

    Article  Google Scholar 

  4. Nosé, S., Klein, M.: Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50(5), 1055–1076 (1983)

    Article  Google Scholar 

  5. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  Google Scholar 

  6. Swegat, W., Schlitter, J., Krüger, P., Wollmer, A.: Md simulation of protein-ligand interaction: formation and dissociation of an insulin-phenol complex. Biophys. J. 84(3), 1493–1506 (2003)

    Article  Google Scholar 

  7. Woo, H.-J., Roux, B.: Calculation of absolute protein-ligand binding free energy from computer simulations. Proc. Natl. Acad. Sci. USA 102(19), 6825–6830 (2005)

    Article  Google Scholar 

  8. Sousa, S.F., Fernandes, P.A., Ramos, M.J.: Protein-ligand docking: current status and future challenges. Proteins 65(1), 15–26 (2006)

    Article  Google Scholar 

  9. Cui, Q., Karplus, M.: Allostery and cooperativity revisited. Protein Sci. 17(8), 1295–1307 (2008)

    Article  Google Scholar 

  10. Deng, Y., Roux, B.: Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B 113(8), 2234–2246 (2009)

    Article  Google Scholar 

  11. Teng, X., Hwang, W.: Structural and dynamical hierarchy of fibrillar collagen. In: Kaunas, R.R., Zemel, A. (eds.) Cell and Matrix Mechanics, Chap. 4, pp. 101–118. CRC Press (2014)

    Google Scholar 

  12. Guterres, H., Im, W.: Improving protein-ligand docking results with high-throughput molecular dynamics simulations. J. Chem. Inf. Model. 60(4), 2189–2198 (2020)

    Article  Google Scholar 

  13. Lahey, S.-L.J., Rowley, C.N.: Simulating protein-ligand binding with neural network potentials. Chem. Sci. 11(9), 2362–2368 (2020)

    Article  Google Scholar 

  14. Durell, S.R., Brooks, B.R., Ben-Naim, A.: Solvent-induced forces between two hydrophilic groups, vol. 98, no. 8, pp. 2198–2202 (1994)

    Google Scholar 

  15. Duan, Y., Kollman, P.A.: Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389), 740–744 (1998)

    Article  Google Scholar 

  16. Mayor, U., Johnson, C.M., Daggett, V., Fersht, A.R.: Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. U.S.A. 97(25), 13518–13522 (2000)

    Article  Google Scholar 

  17. Piana, S., Lindorff-Larsen, K., Shaw, D.E.: Protein folding kinetics and thermodynamics from atomistic simulation. Proc. Natl. Acad. Sci. U.S.A. 109(44), 17845–17850 (2012)

    Article  Google Scholar 

  18. Teng, X., Hwang, W.: Chain registry and load-dependent conformational dynamics of collagen. Biomacromolecules 15(8), 3019–3029 (2014)

    Article  Google Scholar 

  19. Noé, F., De Fabritiis, G., Clementi, C.: Machine learning for protein folding and dynamics. Curr. Opin. Struct. Biol. 60, 77–84 (2020)

    Article  Google Scholar 

  20. Strodel, B.: Energy landscapes of protein aggregation and conformation switching in intrinsically disordered proteins. J. Mol. Biol. 433(20), 167182 (2021)

    Article  Google Scholar 

  21. Brooks, B., Karplus, M.: Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U.S.A. 80(21), 6571–6575 (1983)

    Article  Google Scholar 

  22. Im, W., Roux, B.: Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 m kcl aqueous salt solution. J. Mol. Biol. 319(5), 1177–1197 (2002)

    Article  Google Scholar 

  23. Formaneck, M.S., Ma, L., Cui, Q.: Reconciling the “old’’ and “new’’ views of protein allostery: a molecular simulation study of chemotaxis y protein (chey). Proteins. 63(4), 846–867 (2006)

    Article  Google Scholar 

  24. Teng, X., Hwang, W.: Elastic energy partitioning in DNA deformation and binding to proteins. ACS Nano 10(1), 170–180 (2016)

    Article  Google Scholar 

  25. Teng, X., Hwang, W.: Effect of methylation on local mechanics and hydration structure of DNA. Biophys. J. 114(8), 1791–1803 (2018)

    Article  Google Scholar 

  26. Jiang, Z., You, L., Dou, W., Sun, T., Xu, P.: Effects of an electric field on the conformational transition of the protein: a molecular dynamics simulation study. Polymers 11(2), 282 (2019)

    Article  Google Scholar 

  27. Stevens, J.A., Grünewald, F., van Tilburg, P.M., König, M., Gilbert, B.R., Brier, T.A., Thornburg, Z.R., Luthey-Schulten, Z., Marrink, S.J.: Molecular dynamics simulation of an entire cell. Front. Chem. 11, 1106495 (2023)

    Article  Google Scholar 

  28. Zhong, S., Chen, X., Zhu, X., Dziegielewska, B., Bachman, K.E., Ellenberger, T., Ballin, J.D., Wilson, G.M., Tomkinson, A.E., MacKerell, A.D., Jr.: Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J. Med. Chem. 51(15), 4553–4562 (2008)

    Article  Google Scholar 

  29. Lill, M.A., Danielson, M.L.: Computer-aided drug design platform using PyMOL. J. Comput.-Aid. Mol. Des. 25, 13–19 (2011)

    Article  Google Scholar 

  30. Zhao, H., Caflisch, A.: Molecular dynamics in drug design. Eur. J. Med. Chem. 91, 4–14 (2015)

    Article  Google Scholar 

  31. Rajasekhar, S., Karuppasamy, R., Chanda, K.: Exploration of potential inhibitors for tuberculosis via structure-based drug design, molecular docking, and molecular dynamics simulation studies. J. Comput. Chem. 42(24), 1736–1749 (2021)

    Article  Google Scholar 

  32. Sabe, V.T., Ntombela, T., Jhamba, L.A., Maguire, G.E., Govender, T., Naicker, T., Kruger, H.G.: Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 224, 113705 (2021)

    Article  Google Scholar 

  33. Bai, Q., Liu, S., Tian, Y., Xu, T., Banegas-Luna, A.J., Pérez-Sánchez, H., Huang, J., Liu, H., Yao, X.: Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12(3), e1581 (2022)

    Article  Google Scholar 

  34. Karplus, M., Petsko, G.A.: Molecular dynamics simulations in biology. Nature 347, 631–639 (1990)

    Article  Google Scholar 

  35. Hansson, T., Oostenbrink, C., van Gunsteren, W.: Molecular dynamics simulations. Curr. Opin. Struct. Biol. 12(2), 190–196 (2002)

    Article  Google Scholar 

  36. Teng, X.: Mechanical analysis of collagen and DNA. Ph.D. thesis (2016)

    Google Scholar 

  37. Brooks, C.L., Case, D.A., Plimpton, S., Roux, B., Van Der Spoel, D., Tajkhorshid, E.: Classical molecular dynamics. J. Chem. Phys. 154(10) (2021)

    Google Scholar 

  38. Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A.W., Bridgland, A., et al.: Improved protein structure prediction using potentials from deep learning. Nature 577(7792), 706–710 (2020)

    Article  Google Scholar 

  39. Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003)

    Article  Google Scholar 

  40. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., MacKerell, A.D.: Charmm36: An improved force field for folded and intrinsically disordered proteins. Biophys. J. 112(3), 175a–176a (2017)

    Article  Google Scholar 

  41. Wang, L.-P., Chen, J., Van Voorhis, T.: Systematic parametrization of polarizable force fields from quantum chemistry data. J. Chem. Theory Comp. 9(1), 452–460 (2013)

    Article  Google Scholar 

  42. Wang, L.-P., Martinez, T.J., Pande, V.S.: Building force fields: an automatic, systematic, and reproducible approach. J. Phys. Chem. Lett. 5(11), 1885–1891 (2014)

    Article  Google Scholar 

  43. Teng, X., Liu, B., Ichiye, T.: Understanding how water models affect the anomalous pressure dependence of their diffusion coefficients. J. Chem. Phys. 153(10), 104510 (2020)

    Article  Google Scholar 

  44. Li, Y., Li, H., Pickard, F.C., IV., Narayanan, B., Sen, F.G., Chan, M.K., Sankaranarayanan, S.K., Brooks, B.R., Roux, B.: Machine learning force field parameters from ab initio data. J. Chem. Theory Comp. 13(9), 4492–4503 (2017)

    Article  Google Scholar 

  45. Botu, V., Batra, R., Chapman, J., Ramprasad, R.: Machine learning force fields: construction, validation, and outlook. J. Phys. Chem. C 121(1), 511–522 (2017)

    Article  Google Scholar 

  46. Unke, O.T., Chmiela, S., Sauceda, H.E., Gastegger, M., Poltavsky, I., Schütt, K.T., Tkatchenko, A., Müller, K.-R.: Machine learning force fields. Chem. Rev. 121(16), 10142–10186 (2021)

    Article  Google Scholar 

  47. Poltavsky, I., Tkatchenko, A.: Machine learning force fields: recent advances and remaining challenges. J. Phys. Chem. Lett. 12(28), 6551–6564 (2021)

    Article  Google Scholar 

  48. Al-Lazikani, B., Jung, J., Xiang, Z., Honig, B.: Protein structure prediction. Curr. Opin. Chem. Biol. 5(1), 51–56 (2001)

    Article  Google Scholar 

  49. Zhang, Y.: Progress and challenges in protein structure prediction. Curr. Opin. Chem. Biol. 18(3), 342–348 (2008)

    MathSciNet  Google Scholar 

  50. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)

    Article  Google Scholar 

  51. Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., Yang, J.: The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16(12), 5634–5651 (2021)

    Article  Google Scholar 

  52. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M.: ColabFold: making protein folding accessible to all. Nat. Methods 19(6), 679–682 (2022)

    Article  Google Scholar 

  53. Callaway, E.: Protein-folding contest seeks next big breakthrough. Nature 13–14 (2023)

    Google Scholar 

  54. Kokkinidis, M., Glykos, N., Fadouloglou, V.: Protein flexibility and enzymatic catalysis. Adv. Protein Chem. Struct. Biol. 87, 181–218 (2012)

    Article  Google Scholar 

  55. Secundo, F.: Conformational changes of enzymes upon immobilisation. Chem. Soc. Rev. 42(15), 6250–6261 (2013)

    Article  Google Scholar 

  56. Timasheff, S.N.: Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. U.S.A. 99(15), 9721–9726 (2002)

    Article  Google Scholar 

  57. Bennion, B.J., Daggett, V.: The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. U.S.A. 100(9), 5142–5147 (2003)

    Article  Google Scholar 

  58. Teng, X., Huang, Q., Dharmawardhana, C.C., Ichiye, T.: Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes. J. Chem. Phys. 148(22), 222827 (2018)

    Article  Google Scholar 

  59. Teng, X., Ichiye, T.: Dynamical effects of trimethylamine n-oxide on aqueous solutions of urea. J. Phys. Chem. B 123(5), 1108–1115 (2019)

    Article  Google Scholar 

  60. Teng, X., Ichiye, T.: Dynamical model for the counteracting effects of trimethylamine n-oxide on urea in aqueous solutions under pressure. J. Phys. Chem. B 124(10), 1978–1986 (2020)

    Article  Google Scholar 

  61. Liu, B., Ichiye, T.: Concentration dependence of dynamics and hydrogen bonding in aqueous solutions of urea, methyl-substituted ureas, and trimethylamine n-oxide. J. Mol. Liq. 358, 119120 (2022)

    Article  Google Scholar 

  62. Teng, X., Ichiye, T.: Aqueous solutions of tmao and urea under pressure: molecular dynamics simulation study. In: Abstracts of Papers of the American Chemical Society, vol. 258, American Chemical Society 1155 16th street, NW, Washington, DC 20036 USA (2019)

    Google Scholar 

  63. Liu, S., Liu, C., Deng, L.: Machine learning approaches for protein-protein interaction hot spot prediction: progress and comparative assessment. Mol. 23(10), 2535 (2018)

    Article  Google Scholar 

  64. Jin, Y., Johannissen, L.O., Hay, S.: Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning. Proteins: Struct. Funct. Bioinf. 89(8), 915–921 (2021)

    Google Scholar 

  65. Orlando, G., Raimondi, D., Codice, F., Tabaro, F., Vranken, W.: Prediction of disordered regions in proteins with recurrent neural networks and protein dynamics. J. Mol. Biol. 434(12), 167579 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

X.T. acknowledges support from the National Institutes of Health through Grant No. R01-GM122441, and the mentoring of Toshiko Ichiye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teng, X. (2023). Machine Learning in Molecular Dynamics Simulation. In: Jia, Y., Zhang, W., Fu, Y., Wang, J. (eds) Proceedings of 2023 Chinese Intelligent Systems Conference. CISC 2023. Lecture Notes in Electrical Engineering, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-99-6882-4_52

Download citation

Publish with us

Policies and ethics