Skip to main content

Developments of the Automated Equipment of Apple in the Orchard: A Comprehensive Review

  • Chapter
  • First Online:
Towards Unmanned Apple Orchard Production Cycle

Part of the book series: Smart Agriculture ((SA,volume 6))

  • 152 Accesses

Abstract

Agriculture products are essential to the globe since they meet all of the requirements for human sustenance; thus, constantly developing new methods and equipment to increase output and stability is crucial. The apple is one of the most significant fruits grown worldwide. It offers nutritional and health advantages; therefore, it is essential to increase output and ensure quality by creating intelligent tools and equipment. This study analyzes the growth of intelligent, automated apple fruit equipment in five stages: picking, pruning, thinning, pollinating, and bagging. First, summarizing robots, applications, resources, and findings; next, identifying noteworthy advancements and tactics; then, highlighting the significant difficulties; and lastly, outlining potential prospects and our outlook for the future. They all contribute to providing services and maintaining the growth of research communities for increased apple fruit productivity and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.statista.com/statistics/279555/global-top-apple-producing-countries/.

  2. 2.

    https://www.traptic.com/

  3. 3.

    https://www.ffrobotics.com/

References

  1. Javaid M, Haleem A, Singh RP, Suman R (2021) Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cogn Robot 1:58–75

    Google Scholar 

  2. Zhang Z, Lu R (2021) Automated infield sorting and handling of apples. Fundam Agric Field Robot:267–295

    Google Scholar 

  3. Vougioukas SG (2019) Agricultural robotics. Annu Rev Control Robot Auton Syst 2:365–392

    Article  Google Scholar 

  4. Bechar A, Vigneault C (2017) Agricultural robots for field operations. part 2: operations and systems. Biosyst Eng 153:110–128

    Google Scholar 

  5. Bogue R (2016) Robots poised to revolutionise agriculture. Ind Robot Int J 43(5):450–456

    Article  Google Scholar 

  6. Basu S, Omotubora A, Beeson M, Fox C (2020) Legal framework for small autonomous agricultural robots. Ai Soc 35:113–134

    Article  Google Scholar 

  7. Zhang Z, Igathinathane C, Li J, Cen H, Lu Y, Flores P (2020) Technology progress in mechanical harvest of fresh market apples. Comput Electron Agric 175:105606

    Article  Google Scholar 

  8. Zhang Z, Pothula AK, Lu R (2017) Development of a new bin filler for apple harvesting and infield sorting with a review of existing technologies. In: 2017 ASABE Annual International Meeting, American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  9. Zhang Z, Heinemann PH, Liu J, Baugher TA, Schupp JR (2016) The development of mechanical apple harvesting technology: a review. Trans ASABE 59(5):1165–1180

    Article  Google Scholar 

  10. Roldán JJ, del Cerro J, Garzón-Ramos D, Garcia-Aunon P, Garzón M, De León J, Barrientos A (2018) Robots in agriculture: state of art and practical experiences. Serv Robot:67–90

    Google Scholar 

  11. Gil G, Casagrande D, Cortés LP, Verschae R (2023) Why the low adoption of robotics in the farms? challenges for the establishment of commercial agricultural robots. Smart Agric Technol 3:100069

    Google Scholar 

  12. Zhu CW, Hill E, Biglarbegian M, Gadsden SA, Cline JA (2023) Smart agriculture: development of a skid-steer autonomous robot with advanced model predictive controllers. Robot Auton Syst:104364

    Google Scholar 

  13. Zhang Z, Pothula AK, Lu R (2017) Economic evaluation of apple harvest and in-field sorting technology. Trans ASABE 60(5):1537

    Article  Google Scholar 

  14. Hanif MK, Khan SZ, Bibi M (2023) Applications of artificial intelligence in pest management. In: Artificial intelligence and smart agriculture applications. Auerbach Publications, pp 277–300

    Google Scholar 

  15. Ahmad MN, Anuar MI, Abd Aziz N, Bakri MAM, Hashim Z, Seman IA (2023) Addressing agricultural robotic (agribots) functionalities and automation in agriculture practices: what’s next? Adv Agric Food Res J 4(1)

    Google Scholar 

  16. Pedersen SM, Fountas S, Have H, Blackmore B (2006) Agricultural robots—system analysis and economic feasibility. Precision Agric 7:295–308

    Article  Google Scholar 

  17. Pedersen SM, Fountas S, Sørensen CG, Van Evert FK, Blackmore BS (2017) Robotic seeding: economic perspectives. Precis Agric Technol Econ Perspect:167–179

    Google Scholar 

  18. Blackmore B, Fountas S, Gemtos T, Griepentrog H (2008) A specification for an autonomous crop production mechanization system. In: International symposium on application of precision agriculture for fruits and vegetables, vol 824, pp 201–216

    Google Scholar 

  19. Fountas S, Gemtos T, Blackmore S (2010) Robotics and sustainability in soil engineering. Soil Eng:69–80

    Google Scholar 

  20. Marinoudi V, Sørensen CG, Pearson S, Bochtis D (2019) Robotics and labour in agriculture. a context consideration. Biosyst Eng 184:111–121

    Google Scholar 

  21. Ghobadpour A, Monsalve G, Cardenas A, Mousazadeh H (2022) Off-road electric vehicles and autonomous robots in agricultural sector: trends, challenges, and opportunities. Vehicles 4(3):843–864

    Article  Google Scholar 

  22. Shamshiri RR, Weltzien C, Hameed IA, Yule IJ, Grift TE, Balasundram SK, Pitonakova L, Ahmad D, Chowdhary G (2018) Research and development in agricultural robotics: a perspective of digital farming

    Google Scholar 

  23. Zhai Z, Martínez JF, Beltran V, Martínez NL (2020) Decision support systems for agriculture 4.0: survey and challenges. Comput Electron Agric 170:105256

    Google Scholar 

  24. Santos LC, Santos FN, Pires ES, Valente A, Costa P, Magalha˜es S (2020) Path planning for ground robots in agriculture: a short review. In: 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, pp 61–66

    Google Scholar 

  25. Vasconez JP, Kantor GA, Cheein FAA (2019) Human–robot interaction in agriculture: a survey and current challenges. Biosys Eng 179:35–48

    Article  Google Scholar 

  26. Mahmud MSA, Abidin MSZ, Emmanuel AA, Hasan HS (2020) Robotics and automation in agriculture: present and future applications. Appl Model Simul 4:130–140

    Google Scholar 

  27. Albiero D (2019) Agricultural robotics: a promising challenge, Curr Agric Res J 7(1)

    Google Scholar 

  28. Hajjaj SSH, Sahari KSM (2016) Review of agriculture robotics: practicality and feasibility. In: 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE, pp 194–198

    Google Scholar 

  29. Xu R, Li C (2022) A review of high-throughput field phenotyping systems: focusing on ground robots. Plant Phenomics 2022

    Google Scholar 

  30. Wang F, Ge S, Lyu M, Liu J, Li M, Jiang Y, Xu X, Xing Y, Cao H, Zhu Z et al (2022) DMPP reduces nitrogen fertilizer application rate, improves fruit quality, and reduces environmental cost of intensive apple production in china. Sci Total Environ 802:149813

    Article  Google Scholar 

  31. Benković-Lačić T, CulMak B, Benković R, Antunović S, Mirosavl Mević K (2022) Analysis of consumer opinions and habits related to apple consumption. In: Proceedings of the technique education agriculture management conference (10th International Scientific and Expert Conference TEAM2022), Slavonski Brod, Croatia, pp 455–459

    Google Scholar 

  32. Liang X, Zhang R, Gleason ML, Sun G (2022) Sustainable apple disease management in china: challenges and future directions for a trans-forming industry. Plant Dis 106(3):786–799

    Article  Google Scholar 

  33. Rajan R, Ahmad MF, Singh J, Pandey K et al (2023) Organic apple production and prospects. In: Apples. CRC Press, pp 147–160

    Google Scholar 

  34. Jeyavishnu K, Thulasidharan D, Shereen MF, Arumugam A (2021) In-creased revenue with high value-added products from cashew apple (anacardium occidentale l.)—addressing global challenges. Food Bioprocess Technol 14:985–1012

    Google Scholar 

  35. Liu C-H, Chen T-L, Pai, Chiu C-H, Peng W-G, Weng C-C (2019) An intelligent robotic system for handling and laser marking fruits. In: Technologies and eco-innovation towards sustainability I: eco design of products and services, pp 75–88

    Google Scholar 

  36. Zhang Z, Zhang Z, Wang X, Liu H, Wang Y, Wang W (2019) Models for economic evaluation of multi-purpose apple harvest platform and soft-ware development. Int J Agric Biol Eng 12(1):74–83

    Google Scholar 

  37. Boini A, Casadio N, Bresilla K, Perulli GD, Manfrini L, Grappadelli LC, Morandi B (2022) Early apple fruit development under photo-selective nets. Sci Hortic 292:110619

    Article  Google Scholar 

  38. Hyson DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2(5):408–420

    Article  Google Scholar 

  39. Zhu Z, Jia Z, Peng L, Chen Q, He L, Jiang Y, Ge S (2018) Life cycle assessment of conventional and organic apple production systems in china. J Clean Prod 201:156–168

    Article  Google Scholar 

  40. Sparrow R, Howard M (2021) Robots in agriculture: prospects, impacts, ethics, and policy. Precis Agric 22:818–833

    Google Scholar 

  41. Singh S, Jain P (2022) Applications of artificial intelligence for the development of sustainable agriculture. In: Agro-biodiversity and agri-ecosystem management. Springer, pp 303–322

    Google Scholar 

  42. Porter A, Alhamid J, Mo C, Miller J, Iannelli J, Honegger M, Lichtensteiger L (2020) Analysis and design of an auxiliary catching arm for an apple picking robot. In: ASME international mechanical engineering congress and exposition, vol 84546, American Society of Mechanical Engineers, p V07AT07A011

    Google Scholar 

  43. Kang H, Zhou H, Wang X, Chen C (2020) Real-time fruit recognition and grasping estimation for robotic apple harvesting. Sensors 20(19):5670

    Article  Google Scholar 

  44. Wei J, Yi D, Bo X, Guangyu C, Dean Z (2020) Adaptive variable parameter impedance control for apple harvesting robot compliant picking. Complexity 2020:1–15

    Google Scholar 

  45. Zhang K, Lammers K, Chu P, Li Z, Lu R (2021) System design and control of an apple harvesting robot. Mechatronics 79:102644

    Article  Google Scholar 

  46. Chen W, Zhang J, Guo B, Wei Q, Zhu Z (2021) An apple detection method based on des-yolo v4 algorithm for harvesting robots in complex environment. Math Probl Eng 2021:1–12

    Google Scholar 

  47. Fei Z, Vougioukas SG (2021) Co-robotic harvest-aid platforms: Real-time control of picker lift heights to maximize harvesting efficiency. Comput Electron Agric 180:105894

    Article  Google Scholar 

  48. Yu X, Fan Z, Wang X, Wan H, Wang P, Zeng X, Jia F (2021) A lab-customized autonomous humanoid apple harvesting robot. Comput Electr Eng 96:107459

    Article  Google Scholar 

  49. Wu C, Wang Y, Sun Q, Zhao Y, Zhang L (2021) Design and test of auxiliary harvesting device of apple. Recent Pat Eng 15(1):107–116

    Article  Google Scholar 

  50. Hu G, Chen C, Chen J, Sun L, Sugirbay A, Chen Y, Jin H, Zhang S, Bu L (2022) Simplified 4-dof manipulator for rapid robotic apple harvesting. Comput Electron Agric 199:107177

    Article  Google Scholar 

  51. Krakhmalev O, Gataullin S, Boltachev E, Korchagin S, Blagoveshchensky I, Liang K (2022) Robotic complex for harvesting apple crops. Robotics 11(4):77

    Article  Google Scholar 

  52. Chen K, Li T, Yan T, Xie F, Feng Q, Zhu Q, Zhao C (2022) A soft gripper design for apple harvesting with force feedback and fruit slip detection. Agriculture 12(11):1802

    Article  Google Scholar 

  53. Zhang K, Lammers K, Chu P, Dickinson N, Li Z, Lu R (2022) Algorithm design and integration for a robotic apple harvesting system. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp 9217–9224

    Google Scholar 

  54. Xiong Z, Feng Q, Li T, Xie F, Liu C, Liu L, Guo X, Zhao C (2022) Dual-manipulator optimal design for apple robotic harvesting. Agronomy 12(12):3128

    Article  Google Scholar 

  55. Yoshida T, Onishi Y, Kawahara T, Fukao T (2022) Automated harvesting by a dual-arm fruit harvesting robot. ROBOMECH J 9(1):1–14

    Article  Google Scholar 

  56. Au W, Chen C, Liu T, Kok E, Wang X, Zhou H, Wang MY (2022) The Monash apple retrieving system, Available at SSRN 4272682

    Google Scholar 

  57. Zhang Z, Zhou J, Yi B, Zhang B, Wang K (2023) A flexible swallowing gripper for harvesting apples and its grasping force sensing model. Comput Electron Agric 204:107489

    Article  Google Scholar 

  58. Wang X, Kang H, Zhou H, Au W, Wang MY, Chen C (2023) Develop-ment and evaluation of a robust soft robotic gripper for apple harvesting. Comput Electron Agric 204:107552

    Article  Google Scholar 

  59. Zhou H, Kang H, Wang X, Au W, Wang MY, Chen C (2023) Branch interference sensing and handling by tactile enabled robotic apple harvesting. Agronomy 13(2):503

    Article  Google Scholar 

  60. Bac CW, Van Henten EJ, Hemming J, Edan Y (2014) Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robot 31(6):888–911

    Google Scholar 

  61. Shewfelt RL, Prussia SE (2022) Challenges in handling fresh fruits and vegetables. In: Postharvest handling, Elsevier, pp 167–186

    Google Scholar 

  62. Zhou J, He L, Karkee M, Zhang Q (2016) Analysis of shaking-induced cherry fruit motion and damage. Biosys Eng 144:105–114

    Article  Google Scholar 

  63. Sola-Guirado RR, Castro-Garcia S, Blanco-Roldán GL, Gil-Ribes JA, González-Sánchez EJ (2020) Performance evaluation of lateral canopy shakers with catch frame for continuous harvesting of oranges for juice industry. Int J Agric Biol Eng 13(3):88–93

    Google Scholar 

  64. Wang W, Lu H, Zhang S, Yang Z (2019) Damage caused by multiple im-pacts of litchi fruits during vibration harvesting. Comput Electron Agric 162:732–738

    Article  Google Scholar 

  65. Pu Y, Toudeshki A, Ehsani R, Yang F, Abdulridha J (2018) Selection and experimental evaluation of shaking rods of canopy shaker to reduce tree damage for citrus mechanical harvesting. Int J Agric Biol Eng 11(2):48–54

    Google Scholar 

  66. Sanders K (2005) Orange harvesting systems review. Biosys Eng 90(2):115–125

    Article  Google Scholar 

  67. Bac CW, Hemming J, Van Henten EJ (2014) Stem localization of sweet-pepper plants using the support wire as a visual cue. Comput Electron Agric 105:111–120

    Article  Google Scholar 

  68. Bac CW, Hemming J, Van Tuijl B, Barth R, Wais E, van Henten EJ (2017) Performance evaluation of a harvesting robot for sweet pepper. J Field Robot 34(6):1123–1139

    Article  Google Scholar 

  69. Lehnert C, Sa I, McCool C, Upcroft B, Perez T (2016) Sweet pepper pose detection and grasping for automated crop harvesting. In 2016 IEEE international conference on robotics and automation (ICRA), IEEE, pp 2428–2434

    Google Scholar 

  70. Lehnert C, English A, McCool C, Tow AW, Perez T (2017) Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot Autom Lett 2(2):872–879

    Article  Google Scholar 

  71. Lehnert C, McCool C, Sa I, Perez T (2020) Performance improvements of a sweet pepper harvesting robot in protected cropping environments. J Field Robot 37(7):1197–1223

    Article  Google Scholar 

  72. Arad B, Balendonck J, Barth R, Ben-Shahar O, Edan Y, Hell-stro¨m T, Hemming J, Kurtser P, Ringdahl O, Tielen T et al (2020) Development of a sweet pepper harvesting robot. J Field Robot 37(6):1027–1039

    Google Scholar 

  73. Fan P, Yan B, Wang M, Lei X, Liu Z, Yang F (2021) Three-finger grasp planning and experimental analysis of picking patterns for robotic apple harvesting. Comput Electron Agric 188:106353

    Article  Google Scholar 

  74. Lu Y, Lu R, Zhang Z (2022) Development and preliminary evaluation of a new apple harvest assist and in-field sorting machine. Appl Eng Agric 38(1):23–35

    Article  Google Scholar 

  75. Wu L, Ma J, Zhao Y, Liu H (2021) Apple detection in complex scene using the improved yolov4 model. Agronomy 11(3):476

    Article  Google Scholar 

  76. Liu DW (2022) Hierarchical optimal path planning (hopp) for robotic apple harvesting

    Google Scholar 

  77. Gao R, Zhou Q, Cao S, Jiang Q (2022) An algorithm for calculating apple picking direction based on 3D vision. Agriculture 12(8):1170

    Article  Google Scholar 

  78. Lv J, Wang Y, Xu L, Gu Y, Zou L, Yang B, Ma Z (2019) A method to obtain the near-large fruit from apple image in orchard for single-arm apple harvesting robot. Sci Hortic 257:108758

    Article  Google Scholar 

  79. Forshey C, Elfving DC, Stebbins RL et al (1992) Training and pruning apple and pear trees. American Society for Horticultural Science

    Google Scholar 

  80. Jia W, Wang Z, Zhang Z, Yang X, Hou S, Zheng Y (2022) A fast and efficient green apple object detection model based on FoveaBox. J King Saud Univ-Comput Inf Sci 34(8):5156–5169

    Google Scholar 

  81. Gao F, Fu L, Zhang X, Majeed Y, Li R, Karkee M, Zhang Q (2020) Multi-class fruit-on-plant detection for apple in snap system using faster R-CNN. Comput Electron Agric 176:105634

    Article  Google Scholar 

  82. Chu P, Li Z, Lammers K, Lu R, Liu X (2020) Deepapple: Deep learning-based apple detection using a suppression mask R-CNN. arXiv preprint arXiv:2010.09870

  83. Mazzia V, Khaliq A, Salvetti F, Chiaberge M (2020) Real-time apple detection system using embedded systems with hardware accelerators: An edge AI application. IEEE Access 8:9102–9114

    Article  Google Scholar 

  84. Li Q, Jia W, Sun M, Hou S, Zheng Y (2021) A novel green apple segmentation algorithm based on ensemble u-net under complex orchard environment. Comput Electron Agric 180:105900

    Article  Google Scholar 

  85. Kang H, Chen C (2020) Fruit detection, segmentation and 3d visualisation of environments in apple orchards. Comput Electron Agric 171:105302

    Article  Google Scholar 

  86. Kuznetsova A, Maleva T, Soloviev V (2020) Using yolov3 algorithm with pre-and post-processing for apple detection in fruit-harvesting robot. Agronomy 10(7):1016

    Article  Google Scholar 

  87. Fu L, Majeed Y, Zhang X, Karkee M, Zhang Q (2020) Faster R–CNN–based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting. Biosys Eng 197:245–256

    Article  Google Scholar 

  88. Jia W, Mou S, Wang J, Liu X, Zheng Y, Lian J, Zhao D (2020) Fruit recognition based on pulse coupled neural network and genetic Elman algorithm application in apple harvesting robot. Int J Adv Rob Syst 17(1):1729881419897473

    Google Scholar 

  89. Jiao Y, Luo R, Li Q, Deng X, Yin X, Ruan C, Jia W (2020) Detection and localization of overlapped fruits application in an apple harvesting robot. Electronics 9(6):1023

    Article  Google Scholar 

  90. Jia W, Tian Y, Luo R, Zhang Z, Lian J, Zheng Y (2020) Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput Electron Agric 172:105380

    Article  Google Scholar 

  91. Kuznetsova A, Maleva T, Soloviev V (2021) Yolov5 versus yolov3 for apple detection. In: Cyber-physical systems: modelling and intelligent control. Springer, pp 349–358

    Google Scholar 

  92. Ji W, Pan Y, Xu B, Wang J (2022) A real-time apple targets detection method for picking robot based on shuflenetv2-YOLOX. Agriculture 12(6):856

    Article  Google Scholar 

  93. Pugh A (2013) Robot vision. Springer Science & Business Media

    Google Scholar 

  94. Nasrabadi M, Kordrostami M, Ghasemi-Soloklui AA, Gararazhian M, Gharaghani A (2022) Regulations of form-training and pruning. In: Apples. CRC Press, pp 85–104

    Google Scholar 

  95. van Marrewijk BM, Vroegindeweij BA, Gené-Mola J, Mencarelli A, Hemming J, Mayer N, Wenger M, Kootstra G (2022) Evaluation of a boxwood topiary trimming robot. Biosyst Eng 214:11–27

    Google Scholar 

  96. Molina J, Hirai S (2017) Aerial pruning mechanism, initial real environment test. Robot Biomim 4(1):1–11

    Article  Google Scholar 

  97. Zahid A, Mahmud MS, He L, Heinemann P, Choi D, Schupp J (2021) Technological advancements towards developing a robotic pruner for apple trees: a review. Comput Electron Agric 189:106383

    Article  Google Scholar 

  98. He L, Schupp J (2018) Sensing and automation in pruning of apple trees: a review. Agronomy 8(10):211

    Article  Google Scholar 

  99. Zeng H, Yang J, Yang N, Huang J, Long H, Chen Y (2022) A review of the research progress of pruning robots. In: 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA), IEEE, pp 1069–1073

    Google Scholar 

  100. Saure MC (1987) Summer pruning effects in apple—a review. Sci Hortic 30(4):253–282

    Article  Google Scholar 

  101. Wang Y, Zhang X, Xie L, Zhou J, Su H, Zhang B, Hu X (2020) Pruning from scratch. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp 12273–12280

    Google Scholar 

  102. Lehnert R (2012) Robotic pruning. Good Fruit Grower Nov. 1, 2012. https://www.goodfruit.com/robotic-pruning/

  103. Li D, Wang P, Du L (2018) Path planning technologies for autonomous underwater vehicles-a review. IEEE Access 7:9745–9768

    Google Scholar 

  104. Karkee M, Adhikari B, Amatya S, Zhang Q (2014) Identification of pruning branches in tall spindle apple trees for automated pruning. Comput Electron Agric 103:127–135. https://doi.org/10.1016/j.compag.2014.02.013

    Article  Google Scholar 

  105. Ji W, Qian Z, Xu B, Tao Y, Zhao D, Ding S (2016) Apple tree branch segmentation from images with small gray-level difference for agricultural harvesting robot. Optik 127(23):11173–11182. https://doi.org/10.1016/j.ijleo.2016.09.044

    Article  Google Scholar 

  106. Zhang J, He L, Karkee M, Zhang Q, Zhang X, Gao Z (2018) Branch detection for apple trees trained in fruiting wall architecture using depth features and Regions-Convolutional Neural Network (R-CNN). Comput Electron Agric 155:386–393. https://doi.org/10.1016/j.compag.2018.10.029

    Article  Google Scholar 

  107. Yang CH, Xiong LY, Wang Z, Wang Y, Shi G, Kuremot T, Zhao WH, Yang Y (2020) Integrated detection of citrus fruits and branches using a convolutional neural network. Comput Electron Agric 174. https://doi.org/10.1016/j.compag.2020.105469

  108. Hashimoto K (2003) A review on vision-based control of robot manipulators. Adv Rob 17(10):969–991. https://doi.org/10.1163/156855303322554382

    Article  Google Scholar 

  109. Gongal A, Silwal A, Amatya S, Karkee M, Zhang Q, Lewis K (2016) Apple crop-load estimation with over-the-row machine vision system. Comput Electron Agric 120:26–35. https://doi.org/10.1016/j.compag.2015.10.022

    Article  Google Scholar 

  110. Majeed Y, Zhang J, Zhang X, Fu L, Karkee M, Zhang Q, Whiting MD (2020) Deep learning based segmentation for automated training of apple trees on trellis wires. Comput Electron Agric 170. https://doi.org/10.1016/j.compag.2020.105277

  111. Zhang Y, He S, Wa S, Zong Z, Liu Y (2021) Using generative module and pruning inference for the fast and accurate detection of apple flower in natural environments. Information 12(12):495

    Article  Google Scholar 

  112. Wang Q, Zhang Q (2013) Three-dimensional reconstruction of a dormant tree using RGB-D cameras. In: American society of agricultural and biological engineers, St. Joseph Paper number 131593521, pp 1. ASABE. https://doi.org/10.13031/aim.20131593521

  113. Adhikari B (2012) Identification of pruning branches in tall spindle apple trees for automated pruning. Ph.D. thesis, Washington State University

    Google Scholar 

  114. You A, Sukkar F, Fitch R, Karkee M, Davidson JR (2020) An efficient planning and control framework for pruning fruit trees. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 3930–3936

    Google Scholar 

  115. Korayem M, Shafei A, Seidi E (2014) Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees. Comput Electron Agric 105:95–102

    Article  Google Scholar 

  116. Zahid A, Mahmud MS, He L, Choi D, Heinemann P, Schupp J (2020) Development of an integrated 3R end-effector with a Cartesian manipulator for pruning apple trees. Comput Electron Agric 179. https://doi.org/10.1016/j.compag.2020.105837

  117. Zahid A, He L, Zeng L, Choi D, Schupp J, Heinemann P (2020) Development of a robotic end-effector for apple tree pruning. Trans ASABE 63(4):847–856

    Article  Google Scholar 

  118. You A, Kolano H, Parayil N, Grimm C, Davidson JR (2022) Precision fruit tree pruning using a learned hybrid vision/interaction controller. In: 2022 International Conference on Robotics and Automation (ICRA), IEEE, pp 2280–2286

    Google Scholar 

  119. Zahid A, Mahmud MS, He L, Schupp J, Choi D, Heinemann P (2022) An apple tree branch pruning analysis. HortTechnology 32(2):90–98

    Article  Google Scholar 

  120. Karkee M, Adhikari B (2015) A method for three-dimensional reconstruction of apple trees for automated pruning. Trans ASABE 58(3):565–574

    Google Scholar 

  121. Akbar SA, Chattopadhyay S, Elfiky NM, Kak A (2016) A novel bench-mark RGBD dataset for dormant apple trees and its application to automatic pruning. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 81–88

    Google Scholar 

  122. Elfiky N (2022) Application of artificial intelligence in the food industry: AI-based automatic pruning of dormant apple trees. In: Artificial intelligence: a real opportunity in the food industry. Springer, pp 1–15

    Google Scholar 

  123. Karkee M, Adhikari B (2015) A method for three-dimensional reconstruction of apple trees for automated pruning. Trans ASABE 58(3):565–574. https://doi.org/10.13031/trans.58.10799

  124. Díaz CA, Pérez DS, Miatello H, Bromberg F (2018) Grapevine buds detection and localization in 3D space based on structure from motion and 2D image classification. Comput Ind 99:303–312. https://doi.org/10.1016/j.compind.2018.03.033

  125. Katyara S, Ficuciello F, Caldwell DG, Chen F, Siciliano B (2020) Reproducible pruning system on dynamic natural plants for field agricultural robots, pp 1–15. http://arxiv.org/abs/2008.11613

  126. Baugher T, Jarvinen T, Dugan E, Schupp J (2016) Can a rules-based apple pruning system improve labor efficiency without affecting orchard productivity? PA Fruit News 96(2):16–17

    Google Scholar 

  127. Zahid A, He L, Zeng L, Choi D, Schupp J, Heinemann P (2020a) Development of a robotic end-effector for apple tree pruning. Trans ASABE 63(4):847–856. https://doi.org/10.13031/trans.13729

  128. Kondo N, Ting KC (1998) Robotics for plant production. Artif Intell Rev 12(1–3):227–243. https://doi.org/10.1007/978-94-011-5048-4_12

    Article  Google Scholar 

  129. Botterill T, Paulin S, Green R, Williams S, Lin J, Saxton V, Mills S, Chen XQ, Corbett-Davies S (2017) A robot system for pruning grape vines. J Field Rob 34(6):1100–1122. https://doi.org/10.1002/rob.21680

    Article  Google Scholar 

  130. Huang B, Shao M, Chen W (2016) Design and research on end effector of a pruning robot. Int J Simulat—Syst Sci Technol 17(36):1–5. https://doi.org/10.5013/IJSSST.a.17.36.19

  131. Dallabetta N, Forno F, Mattedi L, Giordan M, Wehrens H et al (2014) The implication of different pruining methods on apple training systems. POLJOPRIVREDA I SUMARSTVO 60(4):173–179

    Google Scholar 

  132. Jackson D, Looney N, Palmer J (2010) Pruning and training of deciduous fruit trees. In: Temperate and subtropical fruit production, CABI Wallingford UK, pp 44–61

    Google Scholar 

  133. Zahid A, He L, Choi D, Schupp J, Heinemann P (2021) Investigation of branch accessibility with a robotic pruner for pruning apple trees. Trans ASABE 64(5):1459–1474

    Article  Google Scholar 

  134. Schupp JR, Winzeler HE, Kon TM, Marini RP, Baugher TA, Kime LF, Schupp MA (2017) A method for quantifying whole-tree pruning severity in mature tall spindle apple plantings. HortScience 52(9):1233–1240

    Article  Google Scholar 

  135. Zhang X, He L, Majeed Y, Whiting MD, Karkee M, Zhang Q (2018) A precision pruning strategy for improving efficiency of vibratory mechanical harvesting of apples. Trans ASABE 61(5):1565–1576

    Article  Google Scholar 

  136. Franzen J, Hirst P (2014) Optimal pruning of apple and effects on tree architecture, productivity, and fruit quality. In: XXIX International Horticultural Congress on horticulture: sustaining lives, livelihoods and landscapes (IHC2014), vol 1130, pp 307–310

    Google Scholar 

  137. Bai J, Xing H, Ma S, Wang M (2019) Studies on parameter extraction and pruning of tall-spindle apple trees based on 2D laser scanner. IFAC-Pap Online 52(30):349–354

    Article  Google Scholar 

  138. Liu S, Yao J, Li H, Qiu C, Liu R (2019) Research on a method of fruit tree pruning based on BP neural network. J Phys Conf Ser, vol 1237. IOP Publishing, p 042047

    Google Scholar 

  139. Zahid A, He L, Choi DD, Schupp J, Heinemann P (2020) Collision free path planning of a robotic manipulator for pruning apple trees. In: 2020 ASABE annual international virtual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  140. Robinson T, Dominguez L, Acosta F (2014) Pruning strategy affects fruit size, yield and biennial bearing of ‘gala’ and ‘honey crisp’ apples. In: XXIX International Horticultural Congress on horticulture: sustaining lives, livelihoods and landscapes (IHC2014), vol 1130, pp 257–264

    Google Scholar 

  141. Zahid A, Mahmud MS, He L (2021) Evaluation of branch cutting torque requirements intended for robotic apple tree pruning. In: 2021 ASABE annual international virtual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  142. Li Y, Ma S, Ding Z, Li L, Xin Y, Su C (2022) Path planning of a robotic manipulator for pruning apple trees based on RRT-connect algorithm. In: 2022 ASABE annual international meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  143. Greene D, Costa G (2012) Fruit thinning in pome-and stone-fruit: state of the art. In: EUFRIN thinning working group symposia, vol 998, pp 93–102

    Google Scholar 

  144. Yoder K, Peck G, Combs L, Byers R (2012) Using a pollen tube growth model to improve apple bloom thinning for organic production. In: II international organic fruit symposium, vol 1001, pp 207–214

    Google Scholar 

  145. Dennis FJ (2000) The history of fruit thinning. Plant Growth Regul 31:1–16

    Article  Google Scholar 

  146. Ilie A, Hoza D, Oltenacu V et al (2016) A brief overview of hand and chemical thinning of apple fruit. Sci Pap Ser B Hortic 60:59–64

    Google Scholar 

  147. Batjer LP, Billingsley HD et al (1964) Apple thinning with chemical sprays

    Google Scholar 

  148. Childers NF (1959) Chemical fruit thinning of peach and apple. Rutgers University

    Google Scholar 

  149. Edgerton L (1972) Control of abscission of apples with emphasis on thinning and pre-harvest drop. In: Symposium on growth regulators in fruit production, vol 34, pp 333–344

    Google Scholar 

  150. Webster A (1992) Tree growth control and fruit thinning; possible alternatives to the use of plant growth regulators. In: II international symposium on integrated fruit production, vol 347, pp 149–162

    Google Scholar 

  151. Wertheim S (1997) Chemical thinning of deciduous fruit trees. In: VIII international symposium on plant bioregulation in fruit production, vol 463, pp 445–462

    Google Scholar 

  152. Bangerth F (2000) Abscission and thinning of young fruit and thier regulation by plant hormones and bioregulators. Plant Growth Regul 31:43–59

    Article  Google Scholar 

  153. Dorigoni A, Lezzer P (2007) Chemical thinning of apple with new com-pounds. Erwerbs-Obstbau 49(3):93–96

    Article  Google Scholar 

  154. Verma P, Sharma S, Sharma N, Chauhan N (2022) Review on crop load management in apple (malus x domestica borkh.). J Hortic Sci Biotechnol:1–23

    Google Scholar 

  155. Schupp J, Baugher TA, Miller S, Harsh R, Lesser K (2008) Mechanical thinning of peach and apple trees reduces labor input and increases fruit size. HortTechnology 18(4):660–670

    Article  Google Scholar 

  156. Blanke M, Damerow L (2008) A novel device for precise and selective thinning in fruit crops to improve fruit quality. In: International symposium on application of precision agriculture for fruits and vegetables, vol 824, pp 275–280

    Google Scholar 

  157. Solomakhin AA, Blanke MM (2010) Mechanical flower thinning improves the fruit quality of apples. J Sci Food Agric 90(5):735–741

    Article  Google Scholar 

  158. Hehnen D, Hanrahan I, Lewis K, McFerson J, Blanke M (2012) Mechanical flower thinning improves fruit quality of apples and promotes consistent bearing. Sci Hortic 134:241–244

    Article  Google Scholar 

  159. McClure KA, Cline JA (2015) Mechanical blossom thinning of apples and influence on yield, fruit quality and spur leaf area. Can J Plant Sci 95(5):887–896

    Article  Google Scholar 

  160. Hussain M, He L, Schupp J, Heinemann P (2022) Green fruit removal dynamics for development of robotic green fruit thinning end-effector. J ASABE 65(4):779–788

    Article  Google Scholar 

  161. Qureshi A, Loh N, Kwon YM, Smith D, Gee T, Bachelor O, McCulloch J, Nejati M, Lim J, Green R et al (2023) Seeing the fruit for the leaves: towards automated apple fruitlet thinning, arXiv preprint arXiv:2302.09716

  162. Basak A, Juraś I, Bialkowski P, Blanke M, Damerow L () Efficacy of mechanical thinning of apple in Poland. In: EUFRIN thinning working group symposia vol 1138, pp 75–82

    Google Scholar 

  163. Lordan J, Alins G, Avila G, Torres E, Carbó J, Bonany J, Alegre S (2018) Screening of eco-friendly thinning agents and adjusting mechanical thinning on ‘gala’, ‘golden delicious’ and ‘fuji’ apple trees, Sci Hortic 239:141–155

    Google Scholar 

  164. Bhattarai U, Bhusal S, Majeed Y, Karkee M (2020) Automatic blossom detection in apple trees using deep learning. IFAC-Pap Online 53(2):15810–15815

    Article  Google Scholar 

  165. Mirbod O, Choi D, Heinemann PH, He L, Schupp JR (2021) In-field apple size and location tracking using machine vision to assist fruit thinning and harvest decision-making. In: 2021 ASABE annual international virtual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  166. Roquer-Beni L, Alins G, Arnan X, Boreux V, García D, Hambäck PA, Happe A-K, Klein A-M, Miñarro M, Mody K et al (2021) Management-dependent effects of pollinator functional diversity on apple pollination services: a response–effect trait approach. J Appl Ecol 58(12):2843–2853

    Google Scholar 

  167. Hussain M, He L, Schupp J, Lyons D, Heinemann P (2023) Green fruit segmentation and orientation estimation for robotic green fruit thinning of apples. Comput Electron Agric 207:107734

    Article  Google Scholar 

  168. Ramírez F, Davenport TL (2013) Apple pollination: a review. Sci Hortic 162:188–203

    Google Scholar 

  169. Potts SG, Neumann P, Vaissière B, Vereecken NJ (2018) Robotic bees for crop pollination: why drones cannot replace biodiversity. Sci Total Environ 642:665–667

    Google Scholar 

  170. Eyles A, Close DC, Quarrell SR, Allen GR, Spurr CJ, Barry KM, Whiting MD, Gracie AJ (2022) Feasibility of mechanical pollination in tree fruit and nut crops: a review. Agronomy 12(5):1113

    Article  Google Scholar 

  171. Wang T, Chen B, Zhang Z, Li H, Zhang M (2022) Applications of ma-chine vision in agricultural robot navigation: a review. Comput Electron Agric 198:107085

    Article  Google Scholar 

  172. Mu X, He L (2022) An advanced Cartesian robotic system for precision apple crop load management. In: 2022 ASABE annual international meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  173. Diaz Guzman S, Henspeter D, Taylor M, Duan S (2021) Drone pollination of flowering vegetation for agricultural applications. In: ASME international mechanical engineering congress and exposition, vol 85581. American Society of Mechanical Engineers, p V004T04A023

    Google Scholar 

  174. Mu X, He L, Heinemann P, Schupp J, Karkee M (2023) Mask R-CNN based apple flower detection and king flower identification for precision pollination. Smart Agric Technol 4:100151

    Article  Google Scholar 

  175. Dias PA, Tabb A, Medeiros H (2018) Apple flower detection using deep convolutional networks. Comput Ind 99:17–28

    Article  Google Scholar 

  176. Dias PA, Tabb A, Medeiros H (2018) Multispecies fruit flower detection using a refined semantic segmentation network. IEEE Robot Autom Lett 3(4):3003–3010

    Article  Google Scholar 

  177. Yuan W, Choi D, Bolkas D, Heinemann PH, He L (2022) Sensitivity examination of YOLOV4 regarding test image distortion and training dataset attribute for apple flower bud classification. Int J Remote Sens 43(8):3106–3130

    Article  Google Scholar 

  178. Sun K, Wang X, Liu S, Liu C (2021) Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set. Comput Electron Agric 185:106150

    Article  Google Scholar 

  179. Tian Y, Yang G, Wang Z, Li E, Liang Z (2020) Instance segmentation of apple flowers using the improved mask R–CNN model. Biosys Eng 193:264–278

    Article  Google Scholar 

  180. Sharma RR, Reddy S, Jhalegar M (2014) Pre-harvest fruit bagging: a useful approach for plant protection and improved post-harvest fruit quality—a review. J Hortic Sci Biotechnol 89(2):101–113

    Article  Google Scholar 

  181. Yang H, Gu F, Wu F, Wang B, Shi L, Hu Z (2022) Production, use and recycling of fruit cultivating bags in china. Sustainability 14(21):14144

    Article  Google Scholar 

  182. Ali M, Anwar R, Yousef A, Li B, Luvisi A, De Bellis L, Aprile A, Chen F (2021) Influence of bagging on the development and quality of fruits. Plants 10:358

    Google Scholar 

  183. Xu Y, Liu Y, Li W, Yang C, Lin Y, Wang Y, Chen C, Wan C, Chen J, Gan Z (2022) The effects of bagging on color change and chemical composition in ‘jinyan’ kiwifruit (Actinidia chinensis). Horticulturae 8(6):478

    Article  Google Scholar 

  184. Ali MM, Anwar R, Yousef AF, Li B, Luvisi A, De Bellis L, Aprile A, Chen F (2021) Influence of bagging on the development and quality of fruits. Plants 10:358

    Article  Google Scholar 

  185. Wang GP, Xue XM, Wang JZ (2021) Research progress and development trend of apple bagging technology in China. J Hebei Agric Sci 25:44–48

    Google Scholar 

  186. Kasso M, Bekele A (2018) Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. J Saudi Soc Agric Sci 17(1):88–96

    Google Scholar 

  187. Gao H, Liu Y, Li D, Yu Y (2017) Vision localization algorithms for apple bagging robot. In: 2017 29th Chinese Control And Decision Conference (CCDC), IEEE, pp 135–140

    Google Scholar 

  188. Wang Y, Zhang Y, Pu Y, Zhang J, Wang F (2018) Design of a new fruit tree bagging machine. In: IOP conference series: materials science and engineering, vol 452. IOP Publishing, p 042099

    Google Scholar 

  189. Gou X, Zhang W, Zhang J, Zhang J, Zhang J (2019) Research on simulation and analysis of monitoring process of hail-proof apple bagging four-rotor aircraft. In: IOP conference series: materials science and engineering, vol 612. IOP Publishing, p 052030

    Google Scholar 

  190. Xia H, Zhen W, Chen D, Zeng W (2019) An ordinary multilayer fruit paper bag supplying device for fruit bagging. HortScience 54(9):1644–1649

    Article  Google Scholar 

  191. Luo Z, Ma L, Zhou Z, Jia S, Fu Z (2019) Design and exploration of an apple sorting baler. In: IOP conference series: materials science and engineering, vol 612. IOP Publishing, p 032029

    Google Scholar 

  192. Xia H, Zhen W, Chen D, Zeng W (2020) Rigid-flexible coupling contact action simulation study of the open mechanism on the ordinary multi-layer fruit paper bag for fruit bagging. Comput Electron Agric 173:105414

    Article  Google Scholar 

  193. Zhang W, Zhang F, Zhang J, Zhang J (2021) Kinematics analysis and trajectory planning computer simulation of smart apple bagging robot by hail suppression. J Phy Conf Ser 2033, IOP Publishing, p 012048

    Google Scholar 

  194. Liu X, Jia W, Ruan C, Zhao D, Gu Y, Chen W (2018) The recognition of apple fruits in plastic bags based on block classification. Precision Agric 19:735–749

    Article  Google Scholar 

  195. Gou X, Zhang W, Zhang J, Zhang J, Zhang J (2019) Study on the structure design and feasibility analysis of apple inhaled box bags based on hailproof. In: IOP conference series: earth and environmental science, vol 252. IOP Publishing, p 052059

    Google Scholar 

  196. Zhang M, Zhang B, Li H, Shen M, Tian S, Zhang H, Ren X, Xing L, Zhao J (2020) Determination of bagged ‘fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm. Infrared Phys Technol 111:103529

    Article  Google Scholar 

  197. Gou X, Zhang W, Zhang J, Zhang J, Zhang J (2020) Study on quality characteristics and feasibility analysis of hail-proof plastic bagging of 5000 mu in Gansu. In: IOP conference series: earth and environmental science, vol. 440. IOP Publishing, p 022048

    Google Scholar 

  198. Yuan L, Li Y, Cheng X, Ge S, Zhang Y (2022) Apple shockproof net cover automatic set machine design. In: Second international conference on Testing Technology and Automation Engineering (TTAE 2022), vol 12457, SPIE, pp 277–282

    Google Scholar 

  199. Pardo A, Borges PA (2020) Worldwide importance of insect pollination in apple orchards: a review. Agr Ecosyst Environ 293:106839

    Article  Google Scholar 

  200. Garratt M, Breeze T, Boreux V, Fountain M, McKerchar M, Webber S, Coston D, Jenner N, Dean R, Westbury D et al (2016) Apple pollination: demand depends on variety and supply depends on pollinator identity. PLoS One 11(5):e0153889

    Article  Google Scholar 

  201. Mu X, He L (2021) Mask R-CNN based king flowers identification for precise apple pollination. In: 2021 ASABE annual international virtual meeting. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hilal Kabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mhamed, M., Kabir, M.H., Zhang, Z. (2023). Developments of the Automated Equipment of Apple in the Orchard: A Comprehensive Review. In: Zhang, Z., Wang, X. (eds) Towards Unmanned Apple Orchard Production Cycle. Smart Agriculture, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-99-6124-5_1

Download citation

Publish with us

Policies and ethics