Skip to main content

Auxetic Materials for Biomedical and Tissue Engineering

  • Chapter
  • First Online:
Materials for Biomedical Simulation

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 326 Accesses

Abstract

Auxetic metamaterials display a negative Poisson’s ratio (NPR) that enables them to behave counterintuitively to the expected material response. While the commonly available materials contract laterally when stretched, auxetic metamaterials expand, and vice versa. Generally, the auxetic properties are attained by structuring a material with micro/macroscopic features. Auxetic metamaterials have numerous biomedical applications; inside the human body, they can be used as stents, disks for spine support, hip implants, bone plates, cardiac patches, and nasopharyngeal swabs. Furthermore, externally the auxetic materials can provide improved performance as shoe inserts and orthopedic braces. The ability to tune the unique properties of an auxetic material via controlling the structuring, and the similarity of their response to the human tissues has led to their increased implementation in biomedical simulation. Auxetic materials are being increasingly used as scaffolds in tissue engineering and in vitro medical devices. The advancement of fabrication techniques has enabled engineers and researchers to construct highly complicated designs which has increased the feasibility of auxetic materials as commercially available technology. Moreover, the advancement of the finite element method (FEM) and molecular dynamics simulations has decreased the resources required for designing auxetic materials due to the ability to quickly and accurately predict their response under various conditions. Auxetic materials being a relatively new field of research, the chapter will introduce the properties and the major designs of auxetic materials. Further, their fabrication techniques commonly used for biomedical engineering, will be discussed. Finally, the applications, particularly in the biomedical field, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veronda DR, Westmann RA (1970) Mechanical characterization of skin—finite deformations. J Biomech 3:111

    Article  CAS  Google Scholar 

  2. Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancellous bone from the Proximal Tibial Epiphysis. J Biomech Eng 104:50

    Article  CAS  Google Scholar 

  3. Derrouiche A, Zaïri F, Zaïri F (2019) A chemo-mechanical model for osmo-inelastic effects in the annulus fibrosus. Biomech Model Mechanobiol 18:1773

    Article  Google Scholar 

  4. Timmins LH, Wu Q, Yeh AT et al (2010) Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol Circ Physiol 298:H1537

    Article  CAS  Google Scholar 

  5. Kim Y, Son KH, Lee JW (2021) Auxetic structures for tissue engineering scaffolds and biomedical devices. Materials (Basel) 14:6821

    Article  CAS  Google Scholar 

  6. Gatt R, Vella Wood M, Gatt A et al (2015) Negative Poisson’s ratios in tendons: an unexpected mechanical response. Acta Biomater 24:201

    Article  Google Scholar 

  7. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532

    Article  CAS  Google Scholar 

  8. Lakes RS, Witt R (2002) Making and characterizing negative Poisson’s Ratio materials. Int J Mech Eng Educ 30:50

    Article  Google Scholar 

  9. Wallbanks M, Khan MF, Bodaghi M et al (2022) On the design workflow of auxetic metamaterials for structural applications. Smart Mater Struct 31:023002

    Article  CAS  Google Scholar 

  10. Carneiro VH, Meireles J, Puga H (2013) Auxetic materials—a review. Mater Sci 31:561

    Google Scholar 

  11. Yang W, Li Z-M, Shi W et al (2004) Review on auxetic materials. J Mater Sci 39:3269

    Article  CAS  Google Scholar 

  12. Critchley R, Corni I, Wharton JA et al (2013) A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys Status Solidi 250:1963

    Article  CAS  Google Scholar 

  13. Li Z, Wang KF, Wang BL (2021) Indentation resistance of brittle auxetic structures: combining discrete representation and continuum model. Eng Fract Mech 252:107824

    Article  Google Scholar 

  14. Tretiakov KV, Wojciechowski KW (2012) Elasticity of two-dimensional crystals of polydisperse hard disks near close packing: surprising behavior of the Poisson’s ratio. J Chem Phys 136:204506

    Article  Google Scholar 

  15. Bezazi A, Boukharouba W, Scarpa F (2009) Mechanical properties of auxetic carbon/epoxy composites: static and cyclic fatigue behaviour. Phys Status Solidi 246:2102

    Article  CAS  Google Scholar 

  16. Chen Y, Qian F, Zuo L et al (2017) Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments. Extrem Mech Lett 17:24

    Article  Google Scholar 

  17. Yang S, Chalivendra VB, Kim YK (2017) Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Compos Struct 168:120

    Article  Google Scholar 

  18. Lakes R (1987) Foam structures with a negative Poisson’s Ratio. Science 235(80):1038

    Google Scholar 

  19. Alderson A, Alderson KL, Chirima G et al (2010) The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos Sci Technol 70:1034

    Article  Google Scholar 

  20. Wang Z, Luan C, Liao G et al (2020) Progress in Auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications. Adv Eng Mater 22:2000312

    Article  Google Scholar 

  21. Attard D, Casha A, Grima J (2018) Filtration properties of Auxetics with rotating rigid units. Materials (Basel) 11:725

    Article  Google Scholar 

  22. Evans KE (2001) Auxetic polymers. Membr Technol 2001:9

    Article  Google Scholar 

  23. Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover, New York

    Google Scholar 

  24. Keskar NR, Chelikowsky JR (1992) Negative Poisson ratios in crystalline SiO2 from first-principles calculations. Nature 358:222

    Article  CAS  Google Scholar 

  25. Grima JN, Jackson R, Alderson A, Evans KE (2000) Do Zeolites Have Negative Poisson’s Ratios? Adv Mater 12:1912

    Article  CAS  Google Scholar 

  26. Williams JJ, Smith CW, Evans KE et al (2007) Off-Axis Elastic Properties and the effect of Extraframework species on structural flexibility of the NAT-Type Zeolites: simulations of structure and elastic properties. Chem Mater 19:2423

    Article  CAS  Google Scholar 

  27. Sanchez-Valle C, Lethbridge ZAD, Sinogeikin SV et al (2008) Negative Poisson’s ratios in siliceous zeolite MFI-silicalite. J Chem Phys 128:184503

    Article  Google Scholar 

  28. Wang H, Li X, Li P, Yang J (2017) δ-Phosphorene: a two dimensional material with a highly negative Poisson’s ratio. Nanoscale 9:850

    Article  CAS  Google Scholar 

  29. Mortazavi B, Shahrokhi M, Makaremi M, Rabczuk T (2017) Anisotropic mechanical and optical response and negative Poisson’s ratio in Mo 2 C nanomembranes revealed by first-principles simulations. Nanotechnology 28:115705

    Article  Google Scholar 

  30. Deng B, Hou J, Zhu H et al (2017) The normal-auxeticity mechanical phase transition in graphene. 2D Mater 4:021020

    Google Scholar 

  31. Zhou L, Zhuo Z, Kou L et al (2017) Computational dissection of two-dimensional rectangular titanium Mononitride TiN: Auxetics and promises for Photocatalysis. Nano Lett 17:4466

    Article  CAS  Google Scholar 

  32. Baughman RH (2003) Auxetic materials: avoiding the shrink. Nature 425:667

    Article  CAS  Google Scholar 

  33. Wang N (2014) Auxetic nuclei. Nat Mater 13:540

    Article  CAS  Google Scholar 

  34. Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111

    CAS  Google Scholar 

  35. Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403

    Article  Google Scholar 

  36. Grima JN, Evans KE (2006) Auxetic behavior from rotating triangles. J Mater Sci 41:3193

    Article  CAS  Google Scholar 

  37. Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19:1563

    Article  CAS  Google Scholar 

  38. Chan N, Evans KE (1999) The mechanical properties of conventional and Auxetic foams. Part II: Shear. J Cell Plast 35:166

    CAS  Google Scholar 

  39. Choi JB, Lakes RS (1992) Non-linear properties of polymer cellular materials with a negative Poisson’s ratio. J Mater Sci 27:4678

    Article  CAS  Google Scholar 

  40. Chan N, Evans KE (1999) The mechanical properties of conventional and Auxetic foams. Part I: compression and tension. J Cell Plast 35:130

    Google Scholar 

  41. Gibson LJ, Ashby MF (1997) Cellular solids, structure and properties. Cambridge University Press

    Google Scholar 

  42. Choi JB, Lakes RS (1995) Nonlinear analysis of the Poisson’s Ratio of negative Poisson’s Ratio foams. J Compos Mater 29:113

    Article  Google Scholar 

  43. Grima J N, Alderson A, Evans KE (2005) An alternative explanation for the negative Poisson’s Ratios in Auxetic foams. J Phys Soc Japan 74:1341

    Google Scholar 

  44. Chan N, Evans KE (1997) Fabrication methods for auxetic foams. J Mater Sci 32:5945

    Article  CAS  Google Scholar 

  45. Scarpa F, Pastorino P, Garelli A et al (2005) Auxetic compliant flexible PU foams: static and dynamic properties. Phys Status Solidi 242:681

    Article  CAS  Google Scholar 

  46. Quadrini F, Bellisario D, Campoli L et al (2015) Auxetic epoxy foams produced by solid state foaming. J Cell Plast 52

    Google Scholar 

  47. Smith FC, Scarpa FL, Burriesci G (2002) Simultaneous optimization of the electromagnetic and mechanical properties of honeycomb materials. In: Davis LP (ed), pp 582–591

    Google Scholar 

  48. Scarpa F, Tomlin PJ (2000) On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue Fract Eng Mater Struct 23:717

    Article  CAS  Google Scholar 

  49. Whitty J, Nazare F, Alderson A (2002) Modelling the effects of density variations on the in-plane Poisson’s ratios and Young’s Moduli of periodic conventional and re-entrant honeycombs—Part 1: Rib thickness variations. IMRI J Artic, 21

    Google Scholar 

  50. Yang DU, Lee S, Huang FY (2003) Geometric effects on micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method. Finite Elem Anal Des 39:187

    Article  Google Scholar 

  51. Bezazi A, Scarpa F, Remillat C (2005) A novel centresymmetric honeycomb composite structure. Compos Struct 71:356

    Article  Google Scholar 

  52. Wan H, Ohtaki H, Kotosaka S, Hu G (2004) A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur J Mech A/Solids 23:95

    Google Scholar 

  53. Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromechanical Syst 6:99

    Article  Google Scholar 

  54. Gaspar N, Ren X, Smith C et al (2005) Novel honeycombs with auxetic behaviour. Acta Mater 53:2439

    Article  CAS  Google Scholar 

  55. Grima JN, Gatt R, Alderson A, Evans KE (2005) On the potential of connected stars as auxetic systems. Mol Simul 31:925

    Article  CAS  Google Scholar 

  56. Álvarez Elipe JC, Díaz Lantada A (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21:105004

    Article  Google Scholar 

  57. Evans KE, Nkansah MA, Hutchinson IJ (1994) Auxetic foams: modelling negative Poisson’s ratios. Acta Metall Mater 42:1289

    Article  Google Scholar 

  58. Wang Y, Wang L, Ma Z, Wang T (2016) Parametric analysis of a cylindrical negative Poisson’s ratio structure. Smart Mater Struct 25:035038

    Article  Google Scholar 

  59. Li D, Dong L, Lakes RS (2016) A unit cell structure with tunable Poisson’s ratio from positive to negative. Mater Lett 164:456

    Article  CAS  Google Scholar 

  60. Yang L, Harrysson O, West H, Cormier D (2012) Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 60:3370

    Article  CAS  Google Scholar 

  61. Bückmann T, Stenger N, Kadic M et al (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710

    Article  Google Scholar 

  62. Critchley R, Corni I, Wharton JA, et al (2013) The Preparation of Auxetic foams by three-dimensional printing and their characteristics. Adv Eng Mater n/a

    Google Scholar 

  63. Wang K, Chang Y-H, Chen Y et al (2015) Designable dual-material auxetic metamaterials using three-dimensional printing. Mater Des 67:159

    Article  Google Scholar 

  64. Shen J, Zhou S, Huang X, Xie YM (2014) Simple cubic three-dimensional auxetic metamaterials. Phys Status Solidi 251:1515

    Article  CAS  Google Scholar 

  65. Yang L, Harrysson O, West H, Cormier D (2015) Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Solids Struct 69–70:475

    Article  Google Scholar 

  66. Wang X-T, Wang B, Li X-W, Ma L (2017) Mechanical properties of 3D re-entrant auxetic cellular structures. Int J Mech Sci 131–132:396

    Article  Google Scholar 

  67. Caddock BD, Evans KE (1989) Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J Phys D Appl Phys 22:1877

    Google Scholar 

  68. Evans KE, Caddock BD (1989) Microporous materials with negative Poisson’s ratios. II. Mechanisms and interpretation. J Phys D Appl Phys 22:1883

    Google Scholar 

  69. Alderson A, Evans KE (1995) Microstructural modelling of auxetic microporous polymers. J Mater Sci 30:3319

    Article  CAS  Google Scholar 

  70. Pickles AP, Alderson KL, Evans KE (1996) The effects of powder morphology on the processing of auxetic polypropylene (PP of negative poisson’s ratio). Polym Eng Sci 36:636

    Article  CAS  Google Scholar 

  71. Alderson KL, Fitzgerald A, Evans KE (2000) The strain dependent indentation resilience of auxetic microporous polyethylene. J Mater Sci 35:4039

    Article  CAS  Google Scholar 

  72. Grima JN, Alderson A, Evans KE (2004) Negative Poisson’s Ratios from rotating rectangles. Comput Methods Sci Technol 10:137

    Article  Google Scholar 

  73. Grima JN, Zammit V, Gatt R et al (2007) Auxetic behaviour from rotating semi-rigid units. Phys Status Solidi 244:866

    Article  CAS  Google Scholar 

  74. Shan S, Kang SH, Zhao Z et al (2015) Design of planar isotropic negative Poisson’s ratio structures. Extrem Mech Lett 4:96

    Article  Google Scholar 

  75. Attard D, Grima JN (2012) A three-dimensional rotating rigid units network exhibiting negative Poisson’s ratios. Phys Status Solidi 249:1330

    Article  CAS  Google Scholar 

  76. Attard D, Grima JN (2008) Auxetic behaviour from rotating rhombi. Phys Status Solidi 245:2395

    Article  CAS  Google Scholar 

  77. Attard D, Manicaro E, Grima JN (2009) On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys Status Solidi 246:2033

    Article  CAS  Google Scholar 

  78. Alderson K, Alderson A, Ravirala N et al (2012) Manufacture and characterisation of thin flat and curved auxetic foam sheets. Phys Status Solidi 249:1315

    Article  CAS  Google Scholar 

  79. Ma X, Zachariah MR, Zangmeister CD (2012) Crumpled Nanopaper from GRAPHENE OXIDe. Nano Lett 12:486

    Article  CAS  Google Scholar 

  80. Hall LJ, Coluci VR, Galvão DS, et al (2008) Sign change of Poisson’s Ratio for carbon nanotube sheets. Science (80)320:504

    Google Scholar 

  81. Grima JN, Grech MC, Grima-Cornish JN et al (2018) Giant Auxetic behaviour in engineered graphene. Ann Phys 530:1700330

    Article  Google Scholar 

  82. Grima JN, Winczewski S, Mizzi L et al (2015) Tailoring graphene to achieve negative Poisson’s Ratio properties. Adv Mater 27:1455

    Article  CAS  Google Scholar 

  83. Eidini M (2016) Zigzag-base folded sheet cellular mechanical metamaterials. Extrem Mech Lett 6:96

    Article  Google Scholar 

  84. Liu S, Lu G, Chen Y, Leong YW (2015) Deformation of the Miura-ori patterned sheet. Int J Mech Sci 99:130

    Article  Google Scholar 

  85. Grima JN, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s Ratios. Adv Eng Mater 12:460

    Article  Google Scholar 

  86. Gao D, Wang S, Zhang M, Zhang C (2021) Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure. Compos Struct 267:113922

    Article  Google Scholar 

  87. Mizzi L, Azzopardi KM, Attard D et al (2015) Auxetic metamaterials exhibiting giant negative Poisson’s ratios. Phys Status Solidi Rapid Res Lett 9:425

    Google Scholar 

  88. Grima JN, Mizzi L, Azzopardi KM, Gatt R (2016) Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv Mater 28:385

    Article  CAS  Google Scholar 

  89. Carta G, Brun M, Baldi A (2016) Design of a porous material with isotropic negative Poisson’s ratio. Mech Mater 97:67

    Article  Google Scholar 

  90. Lakes R (1991) Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J Mater Sci 26:2287

    Article  Google Scholar 

  91. Grima JN, Gatt R, Farrugia P-S (2008) On the properties of auxetic meta-tetrachiral structures. Phys status solidi 245:511

    Article  CAS  Google Scholar 

  92. Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s Ratio of—1. Int J Mech Sci 39:305

    Article  Google Scholar 

  93. Alderson A, Alderson KL, Attard D et al (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70:1042

    Article  Google Scholar 

  94. Mousanezhad D, Haghpanah B, Ghosh R et al (2016) Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach. Theor Appl Mech Lett 6:81

    Article  Google Scholar 

  95. Bhullar SK, Cerkez I, Sezer A, Jun MBG (2015) Swelling behavior of hydrogels within Auxetic polytetrafluoroethylene jacket. Polym Plast Technol Eng 54:1787

    Article  CAS  Google Scholar 

  96. Ma Y, Zheng Y, Meng H et al (2013) Heterogeneous PVA hydrogels with micro-cells of both positive and negative Poisson’s ratios. J Mech Behav Biomed Mater 23:22

    Article  CAS  Google Scholar 

  97. Kunwar P, Jannini AVS, Xiong Z et al (2020) High-resolution 3D printing of stretchable hydrogel structures using optical projection lithography. ACS Appl Mater Interfaces 12:1640

    Article  CAS  Google Scholar 

  98. Mizzi L, Salvati E, Spaggiari A et al (2020) Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. Int J Mech Sci 167:105242

    Article  Google Scholar 

  99. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121

    Article  CAS  Google Scholar 

  100. Warner JJ, Gillies AR, Hwang HH et al (2017) 3D-printed biomaterials with regional auxetic properties. J Mech Behav Biomed Mater 76:145

    Article  CAS  Google Scholar 

  101. Wagner M, Chen T, Shea K (2017) Large shape transforming 4D Auxetic structures. 3D Print Addit Manuf 4:133

    Google Scholar 

  102. Zheng X, Lee H, Weisgraber TH, et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science (80)344:1373

    Google Scholar 

  103. Revilla-León M, Özcan M (2019) Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 28:146

    Article  Google Scholar 

  104. Wu J, Zhao Z, Kuang X et al (2018) Reversible shape change structures by grayscale pattern 4D printing. Multifunct Mater 1:015002

    Article  Google Scholar 

  105. Li S, Hu M, Xiao L, Song W (2020) Compressive properties and collapse behavior of additively-manufactured layered-hybrid lattice structures under static and dynamic loadings. Thin-Walled Struct 157:107153

    Article  Google Scholar 

  106. Yang C, Vora HD, Chang Y (2018) Behavior of auxetic structures under compression and impact forces. Smart Mater Struct 27:025012

    Article  Google Scholar 

  107. Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51:245

    Article  Google Scholar 

  108. Kapnisi M, Mansfield C, Marijon C et al (2018) Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater 28:1800618

    Article  Google Scholar 

  109. Geng LC, Ruan XL, Wu WW et al (2019) Mechanical properties of selective laser sintering (SLS) additive manufactured chiral Auxetic cylindrical stent. Exp Mech 59:913

    Article  Google Scholar 

  110. Meng Z, He J, Cai Z et al (2020) Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater Des 189:108508

    Article  CAS  Google Scholar 

  111. Paxton NC, Lanaro M, Bo A et al (2020) Design tools for patient specific and highly controlled melt electrowritten scaffolds. J Mech Behav Biomed Mater 105:103695

    Article  CAS  Google Scholar 

  112. Olvera D, Sohrabi Molina M, Hendy G, Monaghan MG (2020) Electroconductive Melt Electrowritten patches matching the mechanical anisotropy of human Myocardium. Adv Funct Mater 30:1909880

    Article  CAS  Google Scholar 

  113. Flamourakis G, Spanos I, Vangelatos Z et al (2020) Laser-made 3D Auxetic metamaterial scaffolds for tissue engineering applications. Macromol Mater Eng 305:2000238

    Article  CAS  Google Scholar 

  114. Grima JN, Attard D, Gatt R, Cassar RN (2009) A Novel Process for the manufacture of Auxetic foams and for their re-conversion to conventional form. Adv Eng Mater 11:533

    Article  CAS  Google Scholar 

  115. Kim HW, Kim TY, Park HK et al (2018) Hygroscopic Auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Appl Mater Interfaces 10:40141

    Article  CAS  Google Scholar 

  116. Han S, Jung S, Jeong S et al (2020) High-performance, biaxially stretchable conductor based on Ag composites and hierarchical auxetic structure. J Mater Chem C 8:1556

    Article  CAS  Google Scholar 

  117. Martz EO, Lakes RS, Goel VK, Park JB (2005) Design of an artificial intervertebral disc exhibiting a Negative Poisson’s Ratio. Cell Polym 24:127

    Article  CAS  Google Scholar 

  118. Jiang Y, Shi K, Zhou L et al (2023) 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc. Bioact Mater 20:528

    Article  Google Scholar 

  119. Yao Y, Yuan H, Huang H et al (2021) Biomechanical design and analysis of auxetic pedicle screw to resist loosening. Comput Biol Med 133:104386

    Article  Google Scholar 

  120. Ghavidelnia N, Bodaghi M, Hedayati R (2020) Femur Auxetic meta-Implants with Tuned Micromotion distribution. Materials (Basel) 14:114

    Article  Google Scholar 

  121. Kolken HMA, Janbaz S, Leeflang SMA et al (2018) Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials. Mater Horizons 5:28

    Article  CAS  Google Scholar 

  122. Verdonschot N, Huiskes R (1996) Mechanical effects of stem cement interface characteristics in total hip replacement. Clin Orthop Relat Res 329:326

    Article  Google Scholar 

  123. Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech 5:173

    Google Scholar 

  124. Sousa JE, Serruys PW, Costa MA (2003) New frontiers in cardiology. Circulation 107:2274

    Google Scholar 

  125. Ali MN, Busfield JJC, Rehman IU (2014) Auxetic oesophageal stents: structure and mechanical properties. J Mater Sci Mater Med 25:527

    Article  CAS  Google Scholar 

  126. Bhullar SK, Ko J, Cho Y, Jun MBG (2015) Fabrication and Characterization of nonwoven Auxetic polymer stent. Polym Plast Technol Eng 54:1553

    Article  CAS  Google Scholar 

  127. Lee JW, Soman P, Park JH et al (2016) A tubular biomaterial construct exhibiting a negative Poisson’s Ratio. PLoS ONE 11:e0155681

    Article  Google Scholar 

  128. Hamzehei R, Rezaei S, Kadkhodapour J et al (2020) 2D triangular anti-trichiral structures and auxetic stents with symmetric shrinkage behavior and high energy absorption. Mech Mater 142:103291

    Article  Google Scholar 

  129. Lin C, Zhang L, Liu Y et al (2020) 4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: a preliminary study. Sci China Technol Sci 63:578

    Article  Google Scholar 

  130. Chen Y-W, Wang K, Ho C-C et al (2020) Cyclic tensile stimulation enrichment of Schwann cell-laden auxetic hydrogel scaffolds towards peripheral nerve tissue engineering. Mater Des 195:108982

    Article  CAS  Google Scholar 

  131. Soman P, Lee JW, Phadke A et al (2012) Spatial tuning of negative and positive Poisson’s ratio in a multi-layer scaffold. Acta Biomater 8:2587

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Sardana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, G.P., Sardana, N. (2023). Auxetic Materials for Biomedical and Tissue Engineering. In: Chanda, A., Sidhu, S.S., Singh, G. (eds) Materials for Biomedical Simulation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5064-5_1

Download citation

Publish with us

Policies and ethics