Skip to main content

Introduction to Cytokine and Chemokine Networks

  • Chapter
  • First Online:
Cytokine and Chemokine Networks in Cancer

Abstract

Cytokines are small-molecular-weight, proteinaceous, immunomodulating molecules that are crucial for controlling the growth and activity of blood and other immune cells. They are peptide molecules that cannot cross the lipid bilayer of a cell to enter the cytoplasm but are important for cell signaling. Cytokines bind to specific cell surface receptors and send intracellular signals. They are involved in autocrine, paracrine, and endocrine signaling. Normally, cytokines affect cell activation, division, apoptosis, or movement, but their biological effect depends on the type of cytokine and the cell involved. These essential chemical mediators function as biomarkers for a wide range of illnesses and control immunological and inflammatory responses through intricate networks. They can be discussed in terms of their pro- and anti-inflammatory activities as well as on the basis of their clinical significance. They take part in the immune response and serve as significant immune system communication network mediators. The development, proliferation, and response of immune cells are dynamically controlled by cytokines, which play a significant role in determining health. Multiple biological activities can result from a single cytokine's ability to act on various cell types and can be released by numerous kinds of cells. Cytokines have two common characteristics, redundancy and promiscuity, which are particularly notable in chemokines that are a specific type of cytokine, and can direct immune cell movement toward their target. There are different types of chemokines, like interferons, interleukins, tumor necrosis factor (TNFs), and growth factors. Chemokines, sometimes also referred to as chemotactic cytokines, are a broad family of small, secreted proteins that communicate by binding to the cell surfaces that have heptahelical chemokine receptors (CKRs). They are mostly well-known for their capacity to encourage the movement of cells, particularly that of leukocytes (white blood cells (WBCs)). Since they are involved in all inflammatory and immunological responses, whether beneficial or harmful, chemokines are essential for homeostasis of the immune system and development. This chapter provides a general review of the cytokine network, chemokines, and chemokine receptor families, highlights the chemokine network's numerous physical interactions, and covers the fundamental principles of chemokine function while providing specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal L et al (2004) Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol 78(5):2277–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ait-Oufella H et al (2011) Arteriosclerosis, thrombosis, and vascular. Biol 31:969–979

    CAS  Google Scholar 

  • Alcami A, Lira SA (2010) Modulation of chemokine activity by viruses. Curr Opin Immunol 22(4):482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dabbagh M et al (2013) Elevated inflammatory mediators in adults with oculorespiratory syndrome following influenza immunization: a public health agency of Canada/Canadian Institutes of Health Research influenza research network study. Clin Vaccine Immunol 20(8):1108–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliberti J et al (2003) Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol 4(5):485–490

    Article  CAS  PubMed  Google Scholar 

  • Bachelerie F et al (2014) International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae HR et al (2020) Multi-omics: differential expression of IFN-γ results in distinctive mechanistic features linking chronic inflammation, gut dysbiosis, and autoimmune diseases. J Autoimmun 111:102436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beresini MH et al (1988) Overlapping polypeptide induction in human fibroblasts in response to treatment with interferon-alpha, interferon-gamma, interleukin 1 alpha, interleukin 1 beta, and tumor necrosis factor. J Immunol 140(2):485–493

    Article  CAS  PubMed  Google Scholar 

  • Bernhagen J et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5):587–596

    Article  CAS  PubMed  Google Scholar 

  • Bonvin P et al (2016) Evasins: therapeutic potential of a new family of chemokine-binding proteins from ticks. Front Immunol 7:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Boshtam M et al (2017) Aptamers against pro-and anti-inflammatory cytokines: a review. Inflammation 40(1):340–349

    Article  CAS  PubMed  Google Scholar 

  • Bussmann J, Raz E (2015) Chemokine-guided cell migration and motility in zebrafish development. EMBO J 34(10):1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona AE et al (2008) Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood 112(2):256–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain G et al (2008) Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PLoS One 3(8):e2934

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19(4):541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2019) Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 15(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Cheng A et al (2014) Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264. 7 macrophages. Int J Biol Macromol 69:382–387

    Article  CAS  PubMed  Google Scholar 

  • Choe H et al (2005) Sulphated tyrosines mediate association of chemokines and plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol Microbiol 55(5):1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Colvin RA et al (2006) CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol 26(15):5838–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comerford I, Nibbs RJB (2005) Post-translational control of chemokines: a role for decoy receptors? Immunol Lett 96(2):163–174

    Article  CAS  PubMed  Google Scholar 

  • Comerford I et al (2010) The atypical chemokine receptor CCX-CKR scavenges homeostatic chemokines in circulation and tissues and suppresses Th17 responses. Blood 116(20):4130–4140

    Article  CAS  PubMed  Google Scholar 

  • Dean M et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273(5283):1856–1862

    Article  CAS  PubMed  Google Scholar 

  • Déruaz M et al (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 205(9):2019–2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Devalaraja MN, Richmond A (1999) Multiple chemotactic factors: fine control or redundancy? Trends Pharmacol Sci 20(4):151–156

    Article  CAS  PubMed  Google Scholar 

  • Dimberg A (2010) Chemokines in angiogenesis. Curr Top Microbiol Immunol 341:59–80

    CAS  PubMed  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  CAS  PubMed  Google Scholar 

  • Duchene J et al (2017) Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat Immunol 18(7):753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlert JE et al (2004) Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol 173(10):6234–6240

    Article  CAS  PubMed  Google Scholar 

  • Farhangmehr F, Maurya MR, Tartakovsky DM, Subramaniam S (2014) Information theoretic approach to complex biological network reconstruction: application to cytokine release in RAW 264.7 macrophages. BMC Syst Biol 8:77. https://doi.org/10.1186/1752-0509-8-77. PMID: 24964861; PMCID: PMC4094931

    Article  PubMed  PubMed Central  Google Scholar 

  • Farzan M et al (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96(5):667–676

    Article  CAS  PubMed  Google Scholar 

  • Farzan M et al (2002) The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1α association and HIV-1 entry. J Biol Chem 277(33):29484–29489

    Article  CAS  PubMed  Google Scholar 

  • Fong AM et al (2002) CX3CR1 tyrosine sulfation enhances fractalkine-induced cell adhesion. J Biol Chem 277(22):19418–19423

    Article  CAS  PubMed  Google Scholar 

  • Glass WG et al (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202(8):1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass WG et al (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 203(1):35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez J et al (2004) Analysis of post-translational CCR8 modifications and their influence on receptor activity. J Biol Chem 279(15):14726–14733

    Article  PubMed  Google Scholar 

  • Hayasaka H et al (2015) The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo-and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7. PLoS One 10(2):e0117454

    Article  PubMed  PubMed Central  Google Scholar 

  • He W et al (2008) Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host Microbe 4(1):52–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge DL et al (2014) IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. J Autoimmun 53:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horne KC et al (2009) Duffy antigen polymorphisms do not alter progression of HIV in African Americans in the MACS cohort. Cell Host Microbe 5(5):415–417

    Article  CAS  PubMed  Google Scholar 

  • Hütter G et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698

    Article  PubMed  Google Scholar 

  • Islam SA et al (2011) Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells. Nat Immunol 12(2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Islam SA et al (2013) Identification of human CCR8 as a CCL18 receptor. J Exp Med 210(10):1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julg B et al (2009) Lack of Duffy antigen receptor for chemokines: no influence on HIV disease progression in an African treatment-naive population. Cell Host Microbe 5(5):413–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabel AM (2014) Relationship between cancer and cytokines. J Cancer Res Treat 2(2):41–43

    Google Scholar 

  • Kehrl JH (2006) Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res 34(3):211–227

    Article  CAS  PubMed  Google Scholar 

  • Kiermaier E et al (2016) Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351(6269):186–190

    Article  CAS  PubMed  Google Scholar 

  • Kleist AB et al (2016) New paradigms in chemokine receptor signal transduction: moving beyond the two-site model. Biochem Pharmacol 114:53–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koelman L et al (2019) Cytokines for evaluation of chronic inflammatory status in ageing research: reliability and phenotypic characterisation. Immun Ageing 16(1):1–12

    Article  Google Scholar 

  • Kofler S et al (2005) Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci 108(3):205–213

    Article  CAS  Google Scholar 

  • Kufareva I et al (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93(4):372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kufareva I et al (2017) What do structures tell us about chemokine receptor function and antagonism? Annu Rev Biophys 46:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni H et al (2009) The Duffy-null state is associated with a survival advantage in leukopenic HIV-infected persons of African ancestry. Blood 114(13):2783–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel EJ et al (2000) Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 192(5):761–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS et al (2003) Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo. J Immunol 170(10):5244–5251

    Article  CAS  PubMed  Google Scholar 

  • Lewis DB et al (1988) Restricted production of interleukin 4 by activated human T cells. Proc Natl Acad Sci 85(24):9743–9747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117(5):1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C-H et al (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16(1):1–9

    Article  Google Scholar 

  • Liu R et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377

    Article  CAS  PubMed  Google Scholar 

  • López-Cotarelo P et al (2017) Beyond chemoattraction: multifunctionality of chemokine receptors in leukocytes. Trends Immunol 38(12):927–941

    Article  PubMed  Google Scholar 

  • Lucas B et al (2015) CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol 45(2):574–583

    Article  CAS  PubMed  Google Scholar 

  • Luther SA, Cyster JG (2001) Chemokines as regulators of T cell differentiation. Nat Immunol 2(2):102–107

    Article  CAS  PubMed  Google Scholar 

  • Ma Q et al (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci 95(16):9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20(6):254–257

    Article  CAS  PubMed  Google Scholar 

  • Maravillas-Montero JL et al (2015) Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. J Immunol 194(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Marchant A et al (1995) Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. J Clin Immunol 15(5):266–273

    Article  CAS  PubMed  Google Scholar 

  • Mehrad B et al (2007) Chemokines as mediators of angiogenesis. Thromb Haemost 97(05):755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehraj U et al (2021a) The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell Oncol 44:1209–1229

    Article  Google Scholar 

  • Mehraj U et al (2021b) Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer 28(3):539–555

    Article  PubMed  Google Scholar 

  • Mehraj U et al (2022a) Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: a comprehensive analysis. Adv Cancer Biol Metastasis 4:100037

    Article  CAS  Google Scholar 

  • Mehraj U et al (2022b) Chemokines in triple-negative breast cancer heterogeneity: new challenges for clinical implications. Semin Cancer Biol 86(Pt 2):769–783

    Article  CAS  PubMed  Google Scholar 

  • Mei J et al (2010) CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33(1):106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes V et al (2019) Mechanisms by which the gut microbiota influences cytokine production and modulates host inflammatory responses. J Interf Cytokine Res 39(7):393–409

    Article  CAS  Google Scholar 

  • Millard CJ et al (2014) Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1. Structure 22(11):1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Miossec P (1997) Cytokine-induced autoimmune disorders. Drug Saf 17(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Mir MA (2015a) Introduction to costimulation and costimulatory molecules. In: Mir MA (ed) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 1–43

    Google Scholar 

  • Mir MA (2015b) Costimulation immunotherapy in infectious diseases. In: Mir MA (ed) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 83–129

    Chapter  Google Scholar 

  • Mir MA (2015c) Costimulation immunotherapy in allergies and asthma. In: Mir MA (ed) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 131–184

    Chapter  Google Scholar 

  • Mir MA (2015d) T-cell costimulation and its applications in diseases. In: Mir MA (ed) Developing costimulatory molecules for immunotherapy of diseases. Academic Press, London, pp 255–292

    Chapter  Google Scholar 

  • Mir MA, Gul A (2022) The extracellular matrix in breast cancer. In: Mir MA (ed) Role of tumor microenvironment in breast cancer and targeted therapies. Academic Press, London, pp 195–220

    Chapter  Google Scholar 

  • Mir MA, Mehraj U (2019) Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev 15(2):172–184

    Article  CAS  Google Scholar 

  • Mir MA, Mir AY (2022) Role of regulatory T cells in cancer. In: Mir MA (ed) Role of tumor microenvironment in breast cancer and targeted therapies. Academic Press, London, pp 113–136

    Chapter  Google Scholar 

  • Mir MA et al (2020a) Rising trends of cancers in Kashmir valley: distribution pattern, incidence and causes. J Oncol Res Treat 5:1000150

    Google Scholar 

  • Mir MA et al (2020b) Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets 20(8):586–602

    Article  CAS  PubMed  Google Scholar 

  • Mir MA et al (2022a) Current therapeutics and treatment options in TNBC. In: Mir MA (ed) Combinational therapy in triple negative breast cancer. Academic Press, London, pp 61–94

    Chapter  Google Scholar 

  • Mir MA et al (2022b) Introduction to various types of cancers. In: Mir MA (ed) Role of tumor microenvironment in breast cancer and targeted therapies. Academic Press, London, pp 1–29

    Google Scholar 

  • Mir MA et al (2022c) Conventional adjuvant chemotherapy in combination with surgery, radiotherapy, and other specific targets. In: Mir MA (ed) Combinational therapy in triple negative breast cancer. Academic Press, London, pp 95–120

    Chapter  Google Scholar 

  • Mir MA et al (2022d) Role of immune system in TNBC. In: Mir MA (ed) Combinational therapy in triple negative breast cancer. Academic Press, London, pp 121–148

    Chapter  Google Scholar 

  • Mir WR, Bhat BA, Kumar A, Dhiman R, Alkhanani M, Almilaibary A, Dar MY, Ganie SA, Mir MA (2023) Network pharmacology combined with molecular docking and in vitro verification reveals the therapeutic potential of Delphinium roylei munz constituents on breast carcinoma. Front Pharmacol 14:1135898. https://doi.org/10.3389/fphar.2023.1135898. PMID: 37724182; PMCID: PMC10505441.

  • Monastero RN, Pentyala S (2017) Cytokines as biomarkers and their respective clinical cutoff levels. Int J Inflam 2017:4309485

    PubMed  PubMed Central  Google Scholar 

  • Moser B et al (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Mosmann TR et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    Article  CAS  PubMed  Google Scholar 

  • Moudgil KD, Choubey D (2011) Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interf Cytokine Res 31(10):695–703

    Article  CAS  Google Scholar 

  • Muñoz-Carrillo JL et al (2018) Immune response activation and immunomodulation. IntechOpen, London

    Google Scholar 

  • Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12(1):593–633

    Article  CAS  PubMed  Google Scholar 

  • Nibbs RJB, Graham GJ (2013) Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13(11):815–829

    Article  PubMed  Google Scholar 

  • Niu X, Chen G (2014) Clinical biomarkers and pathogenic-related cytokines in rheumatoid arthritis. J Immunol Res 2014:698192

    Article  PubMed  PubMed Central  Google Scholar 

  • Nourshargh S, Alon R (2014) Leukocyte migration into inflamed tissues. Immunity 41(5):694–707

    Article  CAS  PubMed  Google Scholar 

  • Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Petkovic V et al (2004) Eotaxin-3/CCL26 is a natural antagonist for CC chemokine receptors 1 and 5: a human chemokine with a regulatory role. J Biol Chem 279(22):23357–23363

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC et al (2000) Plasma interleukin-6, tumour necrosis factor α and blood cytokine production in type 2 diabetes. Life Sci 67(3):291–300

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot AEI (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2(2):106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proudfoot AEI et al (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci 100(4):1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruenster M et al (2009) The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 10(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Przemioslo RT, Ciclitira PJ (1996) Cytokines and gastrointestinal disease mechanisms. Baillieres Clin Gastroenterol 10(1):17–32

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H et al (2021) An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 17(31):4185–4206

    Article  CAS  PubMed  Google Scholar 

  • Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA (2023b) A network pharmacology-based investigation of brugine reveals its multi-target molecular mechanism against Breast Cancer. Med Oncol 40(7):202. https://doi.org/10.1007/s12032-023-02067-w. PMID: 37308611.

  • Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA (2023a) Mechanistic elucidation of Juglanthraquinone C targeting breast Cancer: A network Pharmacology-based investigation. Saudi J Biol Sci 30(7):103705. https://doi.org/10.1016/j.sjbs.2023.103705. Epub 2023 Jun 15. PMID: 37425621; PMCID: PMC10329161.

  • Rea IM et al (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586

    Article  PubMed  PubMed Central  Google Scholar 

  • Reich D et al (2009) Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet 5(1):e1000360

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid LE et al (1989) A single DNA response element can confer inducibility by both alpha-and gamma-interferons. Proc Natl Acad Sci 86(3):840–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Robles T et al (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14(4):453–459

    Article  CAS  PubMed  Google Scholar 

  • Rider P et al (2016) Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int J Cell Biol 2016:9259646

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts WM et al (1988) Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell 55(4):655–661

    Article  CAS  PubMed  Google Scholar 

  • Rodney T et al (2018) Pro-and anti-inflammatory biomarkers and traumatic brain injury outcomes: a review. Cytokine 110:248–256

    Article  CAS  PubMed  Google Scholar 

  • Romagnani S (2002) Cytokines and chemoattractants in allergic inflammation. Mol Immunol 38(12–13):881–885

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357

    Article  PubMed  PubMed Central  Google Scholar 

  • Santamaria P (2003) Cytokines and chemokines in autoimmune disease: an overview. Adv Exp Med Biol 520:1–7

    Article  CAS  PubMed  Google Scholar 

  • Schiepers OJG et al (2005) Cytokines and major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 29(2):201–217

    Article  CAS  Google Scholar 

  • Schiraldi M et al (2012) HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209(3):551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte W et al (2013) Cytokines in sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediators Inflamm 2013:165974

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Z et al (2020) Validation of an in vivo electrochemical immunosensing platform for simultaneous detection of multiple cytokines in Parkinson’s disease mice model. Bioelectrochemistry 134:107532

    Article  CAS  PubMed  Google Scholar 

  • Sierro F et al (2007) Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci 104(37):14759–14764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KA (1988) The bimolecular structure of the interleukin 2 receptor. Immunol Today 9(2):36–37

    Article  CAS  PubMed  Google Scholar 

  • Snapper CM, Paul WE (1987) Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236(4804):944–947

    Article  CAS  PubMed  Google Scholar 

  • Sofi S, Jan N, Qayoom H, Alkhanani M, Almilaibary A, Ahmad Mir M 2023 Elucidation of interleukin-19 as a therapeutic target for breast cancer by computational analysis and experimental validation. Saudi J Biol Sci 30(9):103774. https://doi.org/10.1016/j.sjbs.2023.103774. Epub 2023 Aug 11. PMID: 37675062; PMCID: PMC10477739.

  • Sporn MB, Roberts AB (1988) Peptide growth factors are multifunctional. Nature 332(6161):217–219. https://doi.org/10.1038/332217a0

    Article  CAS  PubMed  Google Scholar 

  • Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78(6):539–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314

    Article  CAS  PubMed  Google Scholar 

  • Tan JHY et al (2013) Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1). J Biol Chem 288(14):10024–10034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y et al (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-lβ. Nature 361(6407):79–82

    Article  CAS  PubMed  Google Scholar 

  • Tirone M et al (2018) High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med 215(1):303–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trudeau JD et al (2003) Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 111(2):217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin G et al (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17(12):1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Walley NM et al (2009) The Duffy antigen receptor for chemokines null promoter variant does not influence HIV-1 acquisition or disease progression. Cell Host Microbe 5(5):408–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M et al (2004) The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol Biol Cell 15(5):2492–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wertheimer SP, Barnwell JW (1989) Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol 69(3):340–350

    Article  CAS  PubMed  Google Scholar 

  • Wilson GJ et al (2017) Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development 144(1):74–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler CA et al (2009) Expression of Duffy antigen receptor for chemokines (DARC) has no effect on HIV-1 acquisition or progression to AIDS in African Americans. Cell Host Microbe 5(5):411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf M, Moser B (2012) Antimicrobial activities of chemokines: not just a side-effect? Front Immunol 3:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Woollard SM, Kanmogne GD (2015) Maraviroc: a review of its use in HIV infection and beyond. Drug Des Devel Ther 9:5447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L et al (1996) CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384(6605):179–183

    Article  CAS  PubMed  Google Scholar 

  • Xanthou G et al (2003) CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol 33(8):2241–2250

    Article  CAS  PubMed  Google Scholar 

  • Yang D et al (1999) β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528

    Article  CAS  PubMed  Google Scholar 

  • Zhivaki D et al (2017) Respiratory syncytial virus infects regulatory B cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity. Immunity 46(2):301–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A et al (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11(9):597–606

    Article  CAS  PubMed  Google Scholar 

  • Zweemer AJM et al (2014) Bias in chemokine receptor signalling. Trends Immunol 35(6):243–252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, M.A., Jan, A., Sofi, S. (2023). Introduction to Cytokine and Chemokine Networks. In: Mir, M.A. (eds) Cytokine and Chemokine Networks in Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-99-4657-0_1

Download citation

Publish with us

Policies and ethics