Skip to main content

Insights into Graphene-Based Materials as an Adsorbent for Wastewater Treatment

  • Chapter
  • First Online:
Graphene and its Derivatives (Volume 2)

Abstract

Rapid urbanization and industrialization have resulted in a persistent loss of freshwater resources, which has in turn created severe risks to both human and environmental health. Various techniques like adsorption, oxidation, and aerobic digestion have evolved to tackle water-related threats. The process’s simplicity and cost-effectiveness make adsorption the most promising approach. However, the efficacy of the adsorption is greatly affected by the material used for treatment. Graphene, a single-layer carbonaceous material with remarkable physico-chemical properties like high surface area, exclusive chemical structure, and morphology, has emerged as a promising candidate. The physico-chemical properties of graphene accountable for adsorption and insights, including kinetics, thermodynamic and isotherm studies, have also been discussed. Furthermore, plausible adsorption mechanisms are well discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saini K, Biswas B, Kumar A, Sahoo A, Kumar J, Bhaskar T (2021a) Screening of sugarcane bagasse-derived biochar for phenol adsorption: optimization study using response surface methodology. Int J Environ Sci Technol 1–14

    Google Scholar 

  2. Su H, Hu YH (2021) Recent advances in graphene-based materials for fuel cell applications. Energy Sci Eng 9:958–983

    Article  CAS  Google Scholar 

  3. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56

    Article  CAS  PubMed  Google Scholar 

  4. Gulati A, Kakkar R (2020) Graphene-based adsorbents for water remediation by removal of organic pollutants: theoretical and experimental insights. Chem Eng Res Des 153:21–36

    Article  Google Scholar 

  5. Karthik V, Selvakumar P, Kumar PS, Vo D-VN, Gokulakrishnan M, Keerthana P, Elakkiya VT, Rajeswari R (2021) Graphene-based materials for environmental applications: a review. Environ Chem Lett 1–14

    Google Scholar 

  6. Wang S, Hu Z, Shi J, Chen G, Zhang Q, Weng Z, Wu K, Lu M (2019) Green synthesis of graphene with the assistance of modified lignin and its application in anticorrosive waterborne epoxy coatings. Appl Surf Sci 484:759–770

    Article  CAS  Google Scholar 

  7. Badri MAS, Salleh MM, Noor NFM, Abd Rahman MY, Umar AA (2017) Green synthesis of few-layered graphene from aqueous processed graphite exfoliation for graphene thin film preparation. Mater Chem Phys 193:212–219

    Article  Google Scholar 

  8. Kumar N, Salehiyan R, Chauke V, Botlhoko OJ, Setshedi K, Scriba M, Masukume M, Ray SS (2021) Top-down synthesis of graphene: a comprehensive review. FlatChem 100224

    Google Scholar 

  9. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285

    Article  CAS  PubMed  Google Scholar 

  10. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715. https://doi.org/10.1039/c5ta00252d

    Article  CAS  Google Scholar 

  11. Madhuri KV (2020) Thermal protection coatings of metal oxide powders. INC

    Google Scholar 

  12. Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E (2020) Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25:3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bin WJ, Ren Z, Hou Y, Yan XL, Liu PZ, Zhang H, Zhang HX, Guo JJ (2020) A review of graphene synthesis at low temperatures by CVD methods. Xinxing Tan Cailiao/New Carbon Mater 35:193–208. https://doi.org/10.1016/S1872-5805(20)60484-X

    Article  CAS  Google Scholar 

  14. Lee K, Ye J (2016) Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate. Carbon N Y 100:441–449

    Article  CAS  Google Scholar 

  15. Sun X, Lin L, Sun L, Zhang J, Rui D, Li J, Wang M, Tan C, Kang N, Wei D (2018) Low-temperature and rapid growth of large single-crystalline graphene with ethane. Small 14:1702916

    Article  Google Scholar 

  16. Chen C-S, Hsieh C-K (2015) Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition. Thin Solid Films 584:265–269

    Article  CAS  Google Scholar 

  17. Kang C, Jung DH, Lee JS (2015) Atmospheric pressure chemical vapor deposition of graphene using a liquid benzene precursor. J Nanosci Nanotechnol 15:9098–9103

    Article  CAS  PubMed  Google Scholar 

  18. Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon N Y 49:4204–4210

    Article  CAS  Google Scholar 

  19. Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li Z, Yang J, Hou J (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390

    Article  CAS  PubMed  Google Scholar 

  20. Mohan VB, Brown R, Jayaraman K, Bhattacharyya D (2015) Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater Sci Eng B 193:49–60

    Article  CAS  Google Scholar 

  21. Ismail Z (2019) Green reduction of graphene oxide by plant extracts: a short review. Ceram Int 45:23857–23868

    Article  CAS  Google Scholar 

  22. Jiang C, An D, Wang Z, Zhang S, An X, Bo J, Yan G, Moon KS, Wong C (2020) A sustainable reduction route of graphene oxide by industrial waste lignin for versatile applications in energy and environment. J Clean Prod 268:122019. https://doi.org/10.1016/j.jclepro.2020.122019

    Article  CAS  Google Scholar 

  23. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y (2020) Biomass-derived porous graphitic carbon materials for energy and environmental applications. J Mater Chem A 8:5773–5811. https://doi.org/10.1039/c9ta11618d

    Article  CAS  Google Scholar 

  24. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain energy Rev 57:1126–1140

    Article  CAS  Google Scholar 

  25. Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T (2018) Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon N Y 128:147–163

    Article  CAS  Google Scholar 

  26. Ru H, Bai N, Xiang K, Zhou W, Chen H, Zhao XS (2016) Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 194:10–16

    Article  CAS  Google Scholar 

  27. Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv energy Mater 7:1602898

    Article  Google Scholar 

  28. Tu J, Wang J, Li S, Song W-L, Wang M, Zhu H, Jiao S (2019) High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale 11:12537–12546

    Article  CAS  PubMed  Google Scholar 

  29. Thambiliyagodage CJ, Ulrich S, Araujo PT, Bakker MG (2018) Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon N Y 134:452–463

    Article  CAS  Google Scholar 

  30. Sevilla M, Fuertes AB (2006) Catalytic graphitization of templated mesoporous carbons. Carbon N Y 44:468–474

    Article  CAS  Google Scholar 

  31. Lu A-H, Li W-C, Salabas E-L, Spliethoff B, Schüth F (2006) Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon. Chem Mater 18:2086–2094

    Article  CAS  Google Scholar 

  32. Yang S, Wang S, Liu X, Li L (2019) Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon N Y 147:540–549

    Article  CAS  Google Scholar 

  33. Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy MG (2013) Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers Biorefinery 3:255–269

    Article  Google Scholar 

  34. Liu W, Zhou R, Zhou D, Ding G, Soah JM, Yue CY, Lu X (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon N Y 83:188–197

    Article  CAS  Google Scholar 

  35. Krishnan D, Raidongia K, Shao J, Huang J (2014) Graphene oxide assisted hydrothermal carbonization of carbon hydrates. ACS Nano 8:449–457

    Article  CAS  PubMed  Google Scholar 

  36. Hou D, Liu Q, Cheng H, Zhang H, Wang S (2017) Green reduction of graphene oxide via Lycium barbarum extract. J Solid State Chem 246:351–356

    Article  CAS  Google Scholar 

  37. Kurian M (2021) Recent progress in the chemical reduction of graphene oxide by green reductants-a minireview. Carbon Trends 100120

    Google Scholar 

  38. Ahmad S, Ahmad A, Khan S, Ahmad S, Khan I, Zada S, Fu P (2019) Algal extracts based biogenic synthesis of reduced graphene oxides (rGO) with enhanced heavy metals adsorption capability. J Ind Eng Chem 72:117–124

    Article  CAS  Google Scholar 

  39. Li C, Zhuang Z, Jin X, Chen Z (2017) A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Appl Surf Sci 422:469–474

    Article  CAS  Google Scholar 

  40. Mindivan F, Göktaş M (2020) Rosehip‐extract‐assisted green synthesis and characterization of reduced graphene oxide. ChemistrySelect 5:8980–8985

    Google Scholar 

  41. Gan L, Li B, Chen Y, Yu B, Chen Z (2019) Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: a waste-to-resource supply chain. Chemosphere 219:148–154

    Article  CAS  PubMed  Google Scholar 

  42. Tamilselvi R, Ramesh M, Lekshmi GS, Bazaka O, Levchenko I, Bazaka K, Mandhakini M (2020) Graphene oxide–Based supercapacitors from agricultural wastes: a step to mass production of highly efficient electrodes for electrical transportation systems. Renew Energy 151:731–739

    Article  CAS  Google Scholar 

  43. Nasir S, Hussein MZ, Yusof NA, Zainal Z (2017) Oil palm waste-based precursors as a renewable and economical carbon sources for the preparation of reduced graphene oxide from graphene oxide. Nanomaterials 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yu G, Li P, Wang G, Wang J, Zhang Y, Wang S, Yang K, Du C, Chen H (2021) A review on the removal of heavy metals and metalloids by constructed wetlands: bibliometric, removal pathways, and key factors. World J Microbiol Biotechnol 37.https://doi.org/10.1007/s11274-021-03123-1

  45. Feng L, Chen Q (2020) Bibliometric analysis of the synthesis of nanocatalyst (1999-2018). IOP Conf Ser Earth Environ Sci 558.https://doi.org/10.1088/1755-1315/558/4/042042

  46. Wang Z, Song L, Wang Y, Zhang XF, Yao J (2021) Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. J Phys Chem Solids 150.https://doi.org/10.1016/j.jpcs.2020.109839

  47. Tang S, Xia D, Yao Y, Chen T, Sun J, Yin Y, Shen W, Peng Y (2019) Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. J Colloid Interface Sci 554:682–691

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28:8418–8425. https://doi.org/10.1021/la301476p

    Article  CAS  PubMed  Google Scholar 

  49. Yang Z, Liu X, Liu X, Wu J, Zhu X, Bai Z, Yu Z (2021) Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Coll Surf B Biointerfaces 200:111605

    Article  CAS  Google Scholar 

  50. Gupta K, Yasa SR, Khan A, Sharma OP, Khatri OP (2022) Charge-driven interaction for adsorptive removal of organic dyes using ionic liquid-modified graphene oxide. J Colloid Interface Sci 607:1973–1985

    Article  CAS  PubMed  Google Scholar 

  51. Xu L, Wang J (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol 47:1042–1105

    Article  CAS  Google Scholar 

  52. Jinendra U, Bilehal D, Nagabhushana BM, Kumar AP (2021) Adsorptive removal of Rhodamine B dye from aqueous solution by using graphene–based nickel nanocomposite. Heliyon 7:e06851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joshi P, Sharma OP, Ganguly SK, Srivastava M, Khatri OP (2022) Fruit waste-derived cellulose and graphene-based aerogels: plausible adsorption pathways for fast and efficient removal of organic dyes. J Colloid Interface Sci 608:2870–2883

    Article  CAS  PubMed  Google Scholar 

  54. Vuong Hoan NT, Anh Thu NT, Duc H Van, Cuong ND, Quang Khieu D, Vo V (2016) Fe3O4/reduced graphene oxide nanocomposite: synthesis and its application for toxic metal ion removal. J Chem 2016

    Google Scholar 

  55. Yan J, Li R (2022) Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption. Sci Total Environ 813:152604

    Article  CAS  PubMed  Google Scholar 

  56. Mahmoud AED, Hosny M, El-Maghrabi N, Fawzy M (2022) Facile synthesis of reduced graphene oxide by Tecoma stans extracts for efficient removal of Ni (II) from water: batch experiments and response surface methodology. Sustain Environ Res 32.https://doi.org/10.1186/s42834-022-00131-0

  57. Guo H, Jiao T, Zhang Q, Guo W, Peng Q, Yan X (2015) Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res Lett 10:1–10

    Article  Google Scholar 

  58. Diraki A, Mackey HR, McKay G, Abdala A (2019) Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. J Environ Chem Eng 7:103106

    Article  CAS  Google Scholar 

  59. Gupta K, Khatri OP (2017) Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci 501:11–21

    Article  CAS  PubMed  Google Scholar 

  60. Rajumon R, Anand JC, Ealias AM, Desai DS, George G, Saravanakumar MP (2019) Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: an in-depth investigation on sonochemical factors. J Environ Chem Eng 7:103479

    Article  CAS  Google Scholar 

  61. Yang X, Guo N, Yu Y, Li H, Xia H, Yu H (2020) Synthesis of magnetic graphene oxide-titanate composites for efficient removal of Pb (II) from wastewater: performance and mechanism. J Environ Manage 256:109943

    Article  CAS  PubMed  Google Scholar 

  62. Shahzad A, Miran W, Rasool K, Nawaz M, Jang J, Lim S-R, Lee DS (2017) Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Adv 7:9764–9771

    Article  CAS  Google Scholar 

  63. Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515

    Article  CAS  Google Scholar 

  64. Ali I, Mbianda XY, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180

    Article  CAS  PubMed  Google Scholar 

  65. Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1–9

    Google Scholar 

  66. Qi X, Pu K, Li H, Zhou X, Wu S, Fan Q, Liu B, Boey F, Huang W, Zhang H (2010) Amphiphilic graphene composites. Angew Chemie Int Ed 49:9426–9429

    Article  CAS  Google Scholar 

  67. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105

    Article  CAS  Google Scholar 

  68. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  PubMed  Google Scholar 

  69. Kemp KC, Seema H, Saleh M, Le NH, Mahesh K, Chandra V, Kim KS (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5:3149–3171

    Article  CAS  PubMed  Google Scholar 

  70. Zhuang Y, Yu F, Ma J, Chen J (2015) Adsorption of ciprofloxacin onto graphene-soy protein biocomposites. New J Chem 39:3333–3336. https://doi.org/10.1039/c5nj00019j

    Article  CAS  Google Scholar 

  71. Saini K, Sahoo A, Biswas B, Kumar A, Bhaskar T (2021) Preparation and characterization of lignin-derived hard templated carbon (s): statistical optimization and methyl orange adsorption isotherm studies. Bioresour Technol 342:125924

    Article  CAS  PubMed  Google Scholar 

  72. Arabkhani P, Asfaram A (2020) Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J Hazard Mater 384:121394

    Article  CAS  PubMed  Google Scholar 

  73. Wang M, You X (2021) Critical review of magnetic polysaccharide-based adsorbents for water treatment: synthesis, application and regeneration. J Clean Prod 323:129118

    Article  CAS  Google Scholar 

  74. Scaria J, Gopinath A, Ranjith N, Ravindran V, Ummar S, Nidheesh PV, Kumar MS (2022) Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. J Clean Prod 131319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thallada Bhaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, K., Sahoo, A., Bhaskar, T. (2023). Insights into Graphene-Based Materials as an Adsorbent for Wastewater Treatment. In: Mohanty, K., Saran, S., Kumara Swamy, B.E., Sharma, S.C. (eds) Graphene and its Derivatives (Volume 2). Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-4382-1_1

Download citation

Publish with us

Policies and ethics