Skip to main content

Optic Radiations Monitoring in Awake Glioma Surgery: Intraoperative Campimetry

  • Chapter
  • First Online:
Functional Anatomy of the Brain: A View from the Surgeon’s Eye

Abstract

The state of the art in contemporary glioma surgery is the irremediable fight between anatomic, supramarginal and functional tumor resections. All our efforts are focused on increasing the ‘progression-free survival’ but not at any cost, as the neurological function preservation is nowadays considered as a must. Low grade glioma patients are now considered as long survivors, who should be able to continue with their normal lives after surgical treatments for a long time. Therefore, achieving supramarginal resections, by predicting, detecting and respecting the eloquent areas of the human brain represents the gold-standard on glioma surgery. In this sense, preserving the visual function is of extreme importance, especially in those patients whose daily routine requires a normal visual field. Visual pathways represent a complex anatomy not easily recognizable into the surgical field due to its depth and different directions followed into the periventricular areas. We present our protocol and results after implementing a novel method to detect the optic radiations based on preoperative MRI images and an original intraoperative campimetry implemented to the subcortical stimulation device. The use of this method has allowed us to maximize our resections, as well as to decide the safest surgical trajectory in certain cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. González-Darder JM, González-López P. Management of Brain Tumors in eloquent areas. In: Abujamra AL, editor. Diagnostic techniques and surgical management of brain tumors. InTech; 2011. https://doi.org/10.5772/21796.

    Chapter  Google Scholar 

  2. Ferracci FX, Duffau H. Improving surgical outcome for gliomas with intraoperative mapping. Expert Rev Neurother. 2018;18(4):333–41. https://doi.org/10.1080/14737175.2018.1451329. Epub 2018 Mar 20

    Article  CAS  PubMed  Google Scholar 

  3. Duffau H. Preserving quality of life is not incompatible with increasing overall survival in diffuse low-grade glioma patients. Acta Neurochir. 2015;157:165–7.

    Article  PubMed  Google Scholar 

  4. Soffietti R, Baumert BG, Bello L, Von Deimling A, Duffau H, Frénay M, Grisold W, Grant R, Graus F, Hoang-Xuan K, Klein M, Melin B, Rees J, Siegal T, Smits A, Stupp R, Wick W. Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur J Neurol. 2010 Sep;17(9):1124–33. https://doi.org/10.1111/j.1468-1331.2010.03151.x.

    Article  CAS  PubMed  Google Scholar 

  5. Duffau H, Mandonnet E. The “onco-functional balance” in surgery for diffuse low-grade glioma: integrating the extent of resection with quality of life. Acta Neurochir. 2013;155(6):951–7. https://doi.org/10.1007/s00701-013-1653-9. Epub 2013 Feb 28

    Article  PubMed  Google Scholar 

  6. Duffau H. Surgery for diffuse low-grade gliomas (DLGG) functional Ouctomes. In: Duffau H, editor. Diffuse low-grade gliomas in adults. Springer; 2013. p. 497–533.

    Chapter  Google Scholar 

  7. Gogos AJ, Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. Awake glioma surgery: technical evolution and nuances. J Neuro-Oncol. 2020;147(3):515–24. https://doi.org/10.1007/s11060-020-03482-z. Epub 2020 Apr 8

    Article  CAS  Google Scholar 

  8. Bartholow R. Experimental investigations into the functions of the human brain. Am J Med Sci. 1874;7:305–13.

    Article  Google Scholar 

  9. Penfeld W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60(4):389–443. https://doi.org/10.1093/brain/60.4.38919.

    Article  Google Scholar 

  10. Whitaker HA, Ojemann GA. Graded localisation of naming from electrical stimulation mapping of left cerebral cortex. Nature. 1977;270(5632):50–1. https://doi.org/10.1038/270050a0.

    Article  CAS  PubMed  Google Scholar 

  11. Berger MS, Kincaid J, Ojemann GA, Lettich E. Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery. 1989;25(5):786–92. https://doi.org/10.1097/00006123-198911000-00015.

    Article  CAS  PubMed  Google Scholar 

  12. Sincoff EH, Tan Y, Abdulrauf SI. White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg. 2004;101(5):739–46. https://doi.org/10.3171/jns.2004.101.5.0739.

    Article  PubMed  Google Scholar 

  13. Peltier J, Travers N, Destrieux C, Velut S. Optic radiations: a microsurgical anatomical study. J Neurosurg. 2006;105(2):294–300. https://doi.org/10.3171/jns.2006.105.2.294.

    Article  PubMed  Google Scholar 

  14. Shah A, Goel A, Jhawar SS, Patil A, Rangnekar R, Goel A. Neural circuitry: architecture and function - a Fiber dissection study. World Neursurg. 2019;125:eg20–e638.

    Google Scholar 

  15. Shah A, Jhawar SS, Goel A. Letter to the editor: optic radiations and anterior commissure. J Neurosurg. 2015;123(3):824–6.

    Google Scholar 

  16. Peuskens D, van Loon J, Van Calenbergh F, van den Bergh R, Goffin J, Plets C. Anatomy of the anterior temporal lobe and the frontotemporal region demonstrated by fiber dissection. Neurosurgery. 2004;55(5):1174–84. https://doi.org/10.1227/01.neu.0000140843.62311.24.

    Article  PubMed  Google Scholar 

  17. Mahaney KB, Abdulrauf SI. Anatomic relationship of the optic radiations to the atrium of the lateral ventricle: description of a novel entry point to the trigone. Neurosurgery. 2008;63(4 Suppl 2):195–202; discussion 202–3. https://doi.org/10.1227/01.NEU.0000313121.58694.4A.

    Article  PubMed  Google Scholar 

  18. Fernández-Miranda JC, Rhoton AL Jr, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989–1026; discussion 1026-8. https://doi.org/10.1227/01.neu.0000333767.05328.49.

    Article  PubMed  Google Scholar 

  19. Türe U, Yaşargil MG, Friedman AH, Al-Mefty O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery. 2000;47(2):417–26; discussion 426–7. https://doi.org/10.1097/00006123-200008000-00028.

    Article  PubMed  Google Scholar 

  20. Yasargil MG, Türe U, Yasargil DC. Impact of temporal lobe surgery. J Neurosurg. 2004;101(5):725–38. https://doi.org/10.3171/jns.2004.101.5.0725.

    Article  PubMed  Google Scholar 

  21. Maldonado IL, Destrieux C, Ribas EC, de Abreu S, Brito Guimarães B, Cruz PP, Duffau H. Composition and organization of the sagittal stratum in the human brain: a fiber dissection study. J Neurosurg. 2021;8:1–9. https://doi.org/10.3171/2020.7.JNS192846. Epub ahead of print

    Article  Google Scholar 

  22. Kiviranta P. Mapping the visual field: an empirical study on the user experience benefits of gaze-based interaction in visual field testing. [MDP in human-technology interaction, University of Tampere] 2017. http://urn.fi/URN:NBN:fi:uta-201710092561

  23. Wolfson R, Soni N, Shah AH, Hosein K, Sastry A, Bregy A, Komotar RJ. The role of awake craniotomy in reducing intraoperative visual field deficits during tumor surgery. Asian. J Neurosurg. 2015;10(3):139–44. https://doi.org/10.4103/1793-5482.161189.

    Article  Google Scholar 

  24. Bartos R, Jech R, Vymazal J, Petrovický P, Vachata P, Hejcl A, et al. Validity of primary motor area localization with fMRI versus electric cortical stimulation: a comparative study. Acta Neurochir. 2009;151:1071–80.

    Article  PubMed  Google Scholar 

  25. Petrovich N, Holodny AI, Tabar V, Correa DD, Hirsch J, Gutin PH, et al. Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. J Neurosurg. 2005;103:267–74.

    Article  PubMed  Google Scholar 

  26. Kuchcinski G, Mellerio C, Pallud J, Dezamis E, Turc G, Rigaux-Viodé O, et al. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology. 2015;84:560–8.

    Article  CAS  PubMed  Google Scholar 

  27. Duffau H. Awake mapping and tumor surgery. In: Duffau H, editor. Brain mapping. Springer; 2011. https://doi.org/10.1007/978-3-7091-0723-2_24.

    Chapter  Google Scholar 

  28. Kollias SS. Functional magnetic resonance imaging of the human visual system. In: Baert AL, Sartor K, Müller-Forell WS, editors. Imaging of orbital and visual pathway pathology. Medical radiology (diagnostic imaging). Berlin, Heidelberg: Springer; 2006. https://doi.org/10.1007/3-540-27989-X_4.

    Chapter  Google Scholar 

  29. Dumoulin S. Functional MRI of the visual system. In: Uludag K, Ugurbil K, Berliner L, editors. fMRI: from nuclear spins to brain functions. Biological magnetic resonance, vol 30. Boston, MA: Springer; 2015. https://doi.org/10.1007/978-1-4899-7591-1_15.

    Chapter  Google Scholar 

  30. Hana A, Husch A, Gunness VR, Berthold C, Hana A, Dooms G, Boecher Schwarz H, Hertel F. DTI of the visual pathway–white matter tracts and cerebral lesions. J Vis Exp. 2014;90:51946. https://doi.org/10.3791/51946.

    Article  Google Scholar 

  31. Feigl GC, Hiergeist W, Fellner C, Schebesch KM, Doenitz C, Finkenzeller T, et al. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg. 2014;81:144–50.

    Article  PubMed  Google Scholar 

  32. Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73. https://doi.org/10.3171/2012.6.JNS111981. Epub 2012 Jul 13

    Article  PubMed  Google Scholar 

  33. Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G, et al. The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging. 2015;25:875–82.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kinoshita M, Yamada K, Hashimoto N, Kato A, Izumoto S, Baba T, et al. Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage. 2005;25:424–9.

    Article  PubMed  Google Scholar 

  35. Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, Chiras J, Lehéricy S. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112:503–11.

    Article  PubMed  Google Scholar 

  36. Duffau H. The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg. 2014;81:56–8.

    Article  PubMed  Google Scholar 

  37. Creel DJ. Visually evoked potentials. Handb Clin Neurol. 2019;160:501–22. https://doi.org/10.1016/B978-0-444-64032-1.00034-5.

    Article  PubMed  Google Scholar 

  38. Visually CD, Potentials E. In: Kolb H, Fernandez E, Nelson R, editors. Webvision: the organization of the retina and visual system [internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 2012. p. 1995.

    Google Scholar 

  39. Sharma R, Joshi S, Singh KD, Kumar A. Visual evoked Potentials: normative values and gender differences. J Clin Diagn Res. 2015;9(7):CC12–5. https://doi.org/10.7860/JCDR/2015/12764.6181. Epub 2015 Jul 1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fountas K, Kapsalaki EZ. Surgical management of occipital gliomas: a practical atlas. In: Fountas K, Kapsalaki EZ, editors. Epilepsy surgery and intrinsic brain tumor surgery. Springer; 2019.

    Chapter  Google Scholar 

  41. Verst SM, et al. Awake surgery versus VEP in tumors of visual pathway: case report. Interdisciplinary Neurosurg. 2020;20:100675.

    Article  Google Scholar 

  42. Shahar T, Korn A, Barkay G, Biron T, Hadanny A, Gazit T, Nossek E, Ekstein M, Kesler A, Ram Z. Elaborate mapping of the posterior visual pathway in awake craniotomy. J Neurosurg. 2018;128(5):1503–11. https://doi.org/10.3171/2017.2.JNS162757. Epub 2017 Aug 25

    Article  PubMed  Google Scholar 

  43. Ota T, Kawai K, Kamada K, Kin T, Saito N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J Neurosurg. 2010;112:285–94.

    Article  PubMed  Google Scholar 

  44. Steňo A, Hollý V, Fabian M, Kuniak M, Timárová G, Steňo J. Direct electrical stimulation of the optic radiation in patients with covered eyes. Neurosurg Rev. 2014;37(3):527–33. https://doi.org/10.1007/s10143-014-0535-9. discussion 533. Epub 2014 Feb 28

    Article  PubMed  Google Scholar 

  45. Duffau H, Velut S, Mitchell MC, Gatignol P, Capelle L. Intra-operative mapping of the subcortical visual pathways using direct electrical stimulations. Acta Neurochir. 2004;146(3):265–9. https://doi.org/10.1007/s00701-003-0199-7. discussion 269–70. Epub 2004 Jan 8

    Article  CAS  PubMed  Google Scholar 

  46. Chan-Seng E, Moritz-Gasser S, Duffau H. Awake mapping for low-grade gliomas involving the left sagittal stratum: anatomofunctional and surgical considerations. J Neurosurg. 2014;120(5):1069–77. https://doi.org/10.3171/2014.1.JNS132015. Epub 2014 Jan 31

    Article  PubMed  Google Scholar 

  47. Nguyen HS, Sundaram SV, Mosier KM, Cohen-Gadol AA. A method to map the visual cortex during an awake craniotomy. J Neurosurg. 2011;114(4):922–6. https://doi.org/10.3171/2010.11.JNS101293. Epub 2011 Jan 14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Gonzalez-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez-Lopez, P., Martorell-Llobregat, C., Piqueres, M.D.C., Fernández, E. (2023). Optic Radiations Monitoring in Awake Glioma Surgery: Intraoperative Campimetry. In: Shah, A., Goel, A., Kato, Y. (eds) Functional Anatomy of the Brain: A View from the Surgeon’s Eye. Springer, Singapore. https://doi.org/10.1007/978-981-99-3412-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3412-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3411-9

  • Online ISBN: 978-981-99-3412-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics