Skip to main content

Influence of the Gut Microbiome on Cardiovascular Health and Hypertension

  • Chapter
  • First Online:
Role of Microbes in Sustainable Development

Abstract

Cardiovascular diseases are characterized by high rates of morbidity and mortality. Microbiota are closely associated with cardiovascular disease. There is much evidence that supports the aetiology of many cardiovascular diseases (CVD), and related risk states such as hypertension, atherosclerosis, coronary artery diseases, myocardial infarction, obesity or dyslipidaemia, heart failure, chronic kidney diseases, and diabetes mellitus may be influenced by gut microbial dysbiosis. In addition to dysbiosis, the metabolic potential of gut microbiota (producing bioactive metabolites) also has an effect on host physiology since it enters the systemic circulation and may amplify the inflammatory response. Moreover, it has been shown to be a risk factor for cardiovascular disorders. There are several mechanisms by which the microbiota communicates with the host, including the trimethylamine/trimethylamine N-oxide pathway, the short-chain fatty acid pathway, and the primary and secondary bile acid pathways. It has been hypothesized that these pathways may also play a role in the development of cardiovascular disease. This chapter is mostly about learning about the dynamic relationship between the gut microbiota and cardiovascular disease, with a focus on the pathogenic mechanisms and therapeutic implications of hypertension, atherosclerosis, coronary artery diseases, myocardial infarction, obesity or dyslipidaemia, heart failure, chronic kidney diseases, and diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar H, Foth C, Kahloon RA, Mountfort S (2020) Acute myocardial infarction ST elevation (STEMI). In: StatPearls. StatPearls Publishing LLC, Treasure Island

    Google Scholar 

  • Al Khodor S, Reichert B, Shatat IF (2017) The microbiome and blood pressure: can microbes regulate our blood pressure? Front Pediatr 19(5):138. https://doi.org/10.3389/fped.2017.00138

    Article  Google Scholar 

  • Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD (2019) A new genomic blueprint of the human gut microbiota. Nature 568(7753):499–504. https://doi.org/10.1038/s41586-019-0965-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armani RG, Ramezani A, Yasir A, Sharama S, Canziani ME, Raj DS (2017) Gut microbiome in chronic kidney disease. Curr Hypertens Rep 19(4):1–8

    Article  CAS  Google Scholar 

  • Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Ando M et al (2015) Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avershina E, Lundgård K, Sekelja M, Dotterud C, Storrø O, Øien T, Johnsen R, Rudi K (2016) Transition from infant-to adult-like gut microbiota. Environ Microbiol 18(7):2226–2236

    Article  CAS  PubMed  Google Scholar 

  • Boccella N, Paolillo R, Coretti L, D’Apice S, Lama A, Giugliano G, Schiattarella GG, Cuomo M, d’Aquino I, Cavaliere G, Paciello O (2021) Transverse aortic constriction induces gut barrier alterations, microbiota remodeling and systemic inflammation. Sci Rep 11(1):1

    Article  Google Scholar 

  • Brown JM, Hazen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 66:343–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caesar R, Fak F, Backhed F (2010) Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med 268(4):320–328

    Article  CAS  PubMed  Google Scholar 

  • Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:658–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Lombard V, Henrissat B (2012) Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7:e28742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li HY, Hu XM, Zhang Y, Zhang SY (2019) Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin Med J 132(15):1843–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chockalingam A (2007) Impact of world hypertension day. Can J Cardiol 23(7):517–519. https://doi.org/10.1016/s0828-282x(07)70795-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M (2015) Nutritional keys for intestinal barrier modulation. Front Immunol 6:612

    Article  PubMed  PubMed Central  Google Scholar 

  • Demetris AJ, Zerbe T, Banner B (1989) Morphology of solid organ allograft arteriopathy: identification of proliferating intimal cell populations. Transplant Proc 1:3667–3669

    Google Scholar 

  • Den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM (2015) Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64(7):2398–2408

    Article  Google Scholar 

  • Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  PubMed  Google Scholar 

  • Ding Y et al (2012) Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 32(7):1596–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32

    Article  CAS  PubMed  Google Scholar 

  • Duncan SH, Louis P, Thomson JM et al (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122

    Article  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Evenepoel P, Bammens B, Verbeke K, Vanrenterghem Y (2006) Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study. Kidney Int 70(1):192–198

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Scott KP, Louis P et al (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589

    Article  CAS  PubMed  Google Scholar 

  • Freeland KR, Wolever TM (2010) Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. Br J Nutr 103(3):460–466

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Imaeda H, Takahashi K et al (2013) Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J Gastroenterol Hepatol 28:613–619

    Article  CAS  PubMed  Google Scholar 

  • Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    Article  CAS  PubMed  Google Scholar 

  • Gan XT et al (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 7(3):491–499

    Article  PubMed  Google Scholar 

  • Gao J, Yan KT, Wang JX, Dou J, Wang J, Ren M, Ma J, Zhang X, Liu Y (2020) Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events. Sci Rep 10:2639. https://doi.org/10.1038/s41598-020-59235-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard SA et al (2009) Lactobacillus helveticus and bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. Br J Nutr 102(10):1420–1425

    Article  CAS  PubMed  Google Scholar 

  • Grice EA, Segre JA (2011) E skin microbiome. Nat Rev Microbiol 9(4):244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G (2019) Sodium intake and hypertension. Nutrients 11(9):1970. https://doi.org/10.3390/nu11091970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarner F (2005) The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr Opin Gastroenterol 21:414–418

    PubMed  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  • Guo Z et al (2011) Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 21(11):844–850

    Article  CAS  PubMed  Google Scholar 

  • Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590

    Article  PubMed  PubMed Central  Google Scholar 

  • Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F et al (2018) Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 38:2225–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Hasan N, Yang H (2019) Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7:e7502

    Article  PubMed  PubMed Central  Google Scholar 

  • Henao-Mejia J et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeppli RE, Wu D, Cook L, Levings MK (2015) Environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol 6:e1002808

    Article  Google Scholar 

  • Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458

    Article  PubMed  Google Scholar 

  • Holmes E, Loo R, Stamler J, Bictash M, Yap I, Chan Q et al (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193):396–400. https://doi.org/10.1038/nature06882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Ishii S, Yazaki M, Fujita T, Iida Y, Kaida T, Nabeta T, Nakatani E, Maekawa E, Yanagisawa T, Koitabashi T (2018) Portal congestion and intestinal edema in hospitalized patients with heart failure. Heart Vessel 33(7):740–751

    Article  Google Scholar 

  • Ivanov II, FrutosRde L, Manel N et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T et al (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36(4):561–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin C, Henao-Mejia J, Flavell RA (2013) Innate immune receptors: key regulators of metabolic disease progression. Cell Metab 17(6):873–882

    Article  CAS  PubMed  Google Scholar 

  • Jones ML, Martoni CJ, Parent M, Prakash S (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Kamada N, Nunez G (2014) Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 146:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245

    Article  PubMed  Google Scholar 

  • Kasselman LJ, Vernice NA, DeLeon J, Reiss AB (2018) The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 271:203–213

    Article  CAS  PubMed  Google Scholar 

  • Khalili L, Alipour B, AsghariJafarabadi M, Hassanalilou T, Mesgari Abbasi M, Faraji I (2019) Probiotic assisted weight management as a main factor for glycemic control in patients with type 2 diabetes: a randomized controlled trial. Diabetol Metab Syndr 11(1):1–9

    Article  Google Scholar 

  • Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K et al (2018) Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci 132:701–718

    Article  CAS  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T (2013) The gut microbiota suppresses insulin mediated fat accumulation via short-chain fatty acid receptor GPR43. Nat Commun J 4:1829

    Article  Google Scholar 

  • Kiouptsi K, Finger S, Garlapati VS, Knorr M, Brandt M, Walter U, Wenzel P, Reinhardt C (2019) Hypoxia evokes increased PDI and PDIA6 expression in the infarcted myocardium of ex-germ-free and conventionally raised mice. Biol Open 8:bio038851. https://doi.org/10.1242/bio.038851

    Article  CAS  PubMed  Google Scholar 

  • Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor CM, Felker GM (2010) Troponin elevation in heart failure: prevalence, mechanisms, and clinical implications. J Am Coll Cardiol 56(14):1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC et al (2014) gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to tmao. Cell Metab 20(5):799–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, Copeland MF, Bartlett D, Cody DB, Dai HJ, Culley MK, Li XS, Fu X, Wu Y, Li L, DiDonato JA, Tang WHW, Garcia-Garcia JC, Hazen SL (2019) L-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 129:373–387

    Article  PubMed  Google Scholar 

  • Krznaric Z, Vranesic Bender D, Mestrovic T (2019) The Mediterranean diet and its association with selected gut bacteria. Curr Opin Clin Nutr Metab Care 22:401–406

    Article  PubMed  Google Scholar 

  • Lai ZL, Tseng CH, Ho HJ, Cheung CK, Lin JY, Chen YJ, Cheng FC, Hsu YC, Lin JT, El-Omar EM, Wu CY (2018) Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci Rep 8(1):1

    Article  Google Scholar 

  • Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, Rafiee P, Gross GJ, Salzman NH, Baker JE (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727–1735. https://doi.org/10.1096/fj.11-197921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A et al (2012) Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Le Roy T, Lécuyer E, Chassaing B, Rhimi M, Lhomme M, Boudebbouze S, Ichou F, Haro Barceló J, Huby T, Guerin M, Giral P (2019) The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 17(1):1–8

    Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444(7122):1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, Windecker S, Rodondi N, Nanchen D, Muller O et al (2017) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–824. https://doi.org/10.1093/eurheartj/ehw582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG et al (2018) Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 3(6):e99096

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Liu B, Song J, An Z, Zeng X, Li J et al (2019a) Characteristics of gut microbiota in patients with hypertension and/or hyperlipidemia: a cross-sectional study on rural residents in Xinxiang County, Henan Province. Microorganisms 7:E399. https://doi.org/10.3390/microorganisms7100399

    Article  CAS  Google Scholar 

  • Li XS, Obeid S, Wang Z, Hazen BJ, Li L, Wu Y et al (2019b) Trimethyllysine, a trimethyl-amine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. Eur Heart J 40(32):2700–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z (2020) Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep 10(1):1–8

    Google Scholar 

  • Liu T, Hougen H, Vollmer AC, Hiebert SM (2012) Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Anaerobe 18:331–337

    Article  CAS  PubMed  Google Scholar 

  • Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M et al (2010) Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein e-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 30:749–757

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S (2011) Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol 45(suppl):S120–S127

    Article  CAS  PubMed  Google Scholar 

  • Mahida YR, Rolfe VE (2004) Host-bacterial interactions in inflammatory bowel disease. Clin Sci 107:331–341

    Article  CAS  Google Scholar 

  • Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339

    Article  PubMed  Google Scholar 

  • Marques FZ et al (2018) Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol 15:20–32. https://doi.org/10.1038/nrcardio.2017.120

    Article  PubMed  Google Scholar 

  • May-Zhang LS, Chen Z, Dosoky NS, Yancey PG, Boyd KL, Hasty AH et al (2019) Administration of N-acyl-phosphatidylethanolamine expressing bacteria to low density lipoprotein receptor(-/-) mice improves indices of cardiometabolic disease. Sci Rep 9:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • McCafferty K, Byrne C, Yaqoob M (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(11):4388. author reply 4388-9

    Article  CAS  PubMed  Google Scholar 

  • McMillan A, Hazen S (2019) Gut microbiota involvement in ventricular remodeling post–myocardial infarction. Circulation 139(5):660–662

    Article  PubMed  PubMed Central  Google Scholar 

  • McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342

    Article  CAS  PubMed  Google Scholar 

  • Meijers BK, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P (2010) p-Cresylsulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25(1):219–224

    Article  CAS  PubMed  Google Scholar 

  • Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, Fukuda NN, Suzuki T, Suzuki C, Yuri A, Kikuchi K (2015) Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol 26(8):1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Greenland P, Stamler J, Liu K, Daviglus ML, Nakagawa H (2004) Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: the Chicago Western Electric Study. Am J Epidemiol 159:572–580

    Article  PubMed  Google Scholar 

  • Moludi J, Kafil HS, Qaisar SA, Gholizadeh P, Alizadeh M, Vayghyan HJ (2021) Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients: a double blind placebo controlled randomized clinical trial. Nutr J 20(1):1

    Article  Google Scholar 

  • Morgan XC, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8:e1002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagatomo Y, Tang WW (2015) Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail 21(12):973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D (2017) Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 179:24–37

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Asar T, Kumar V, Al-Abbasi F, Alhayyani S, Kamal M, Anwar F (2021) A cross-talk between gut microbiome, salt and hypertension. Biomed Pharmacother 134:111156. https://doi.org/10.1016/j.biopha.2020.111156

    Article  CAS  PubMed  Google Scholar 

  • Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353(9167):1838–1842

    Article  CAS  PubMed  Google Scholar 

  • Norman JM, Handley SA, Virgin HW (2014) Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146:1459–1469

    Article  CAS  PubMed  Google Scholar 

  • Novakovic M, Rout A, Kingsley T, Kirchoff R, Singh A, Verma V, Kant R, Chaudhary R (2020) Role of gut microbiota in cardiovascular diseases. World J Cardiol 12(4):110–122. https://doi.org/10.4330/wjc.v12.i4.110. PMID: 32431782; PMCID: PMC7215967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, Polhemus DJ, Tang WW, Wu Y, Hazen SL, Lefer DJ (2016) Choline diet and its gut microbe–derived metabolite, trimethylamine N-oxide, exacerbate pressure overload–induced heart failure. Circulation 9(1):e002314

    CAS  PubMed  Google Scholar 

  • Pascal M, Perez-Gordo M, Caballero T et al (2018) Microbiome and allergic diseases. Front Immunol 9:1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4(3):220–227

    Article  PubMed  Google Scholar 

  • Pevsner-Fischer M, Blacher E, Tatirovsky E, Ben-Dov IZ, Elinav E (2017) The gut microbiome and hypertension. Curr Opin Nephrol Hypertens 26:1–8. https://doi.org/10.1097/MNH.0000000000000293

    Article  CAS  PubMed  Google Scholar 

  • Phillips CM, Harrington JM, Perry IJ (2018) Relationship between dietary quality, determined by DASH score, and cardiometabolic health biomarkers: a cross-sectional analysis in adults. Clin Nutr 38(4):1620–1628. https://doi.org/10.1016/j.clnu.2018.08.028

    Article  PubMed  Google Scholar 

  • Pisarenko OI, Khlopkov VN, Ruuge EK (1986) A 1H NMR study of succinate synthesis from exogenous precursors in oxygen-deprived rat heart mitochondria. Biochem Int 12:145–153

    CAS  PubMed  Google Scholar 

  • Pluznick JL (2013) Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol 305:F439–F444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafter J (2004) The effects of probiotics on colon cancer development. Nutr Res Rev 17(2):277–284

    Article  PubMed  Google Scholar 

  • Rajilic-Stojanovic M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047

    Article  CAS  PubMed  Google Scholar 

  • Ramezani A, Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25(4):657–670

    Article  CAS  PubMed  Google Scholar 

  • Reid T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357–360

    Article  Google Scholar 

  • Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, Mele MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rook G, Backhed F, Levin BR, McFall-Ngai MJ, McLean AR (2017) Evolution, human-microbe interactions, and life history plasticity. Lancet 390:521–530

    Article  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis-an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci 105(43):16767–16772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saneei P, Hashemipour M, Kelishadi R, Esmaillzadeh A (2014) The dietary approaches to stop hypertension (DASH) diet affects inflammation in childhood metabolic syndrome: a randomized cross-over clinical trial. Ann Nutr Metab 64:20–27

    Article  CAS  PubMed  Google Scholar 

  • Santoru ML, Piras C, Murgia A, Palmas V, Camboni T, Liggi S et al (2017) Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep 7:9523

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235

    Article  CAS  PubMed  Google Scholar 

  • Schoeler M, Caesar R (2019) Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 20(4):461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwiertz A, Taras D, Schafer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195

    Article  PubMed  Google Scholar 

  • Shikata F, Shimada K, Sato H, Ikedo T, Kuwabara A, Furukawa H et al (2019) Potential influences of gut microbiota on the formation of intracranial aneurysm. Hypertension 73:491–496

    Article  CAS  PubMed  Google Scholar 

  • Silveira-Nunes G, Durso DF Jr, Luiz Roberto AO, Cunha EHM, Maioli TU, Vieira AT, Speziali E, Corr Aaa-Oliveira R, Martins-Filho OA, Teixeira-Carvalho A, Franceschi C, Rampelli S, Turroni S, Brigidi P, Faria AMC (2020) Hypertension is associated with intestinal microbiota dysbiosis and inflammation in a Brazilian population. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00258

  • Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, Ayres JW (1996) Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 22(1-3):92–96

    CAS  PubMed  Google Scholar 

  • Simpson HL, Campbell BJ (2015) Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther 42:158–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skagen K, Troseid M, Ueland T, Holm S, Abbas A, Gregersen I et al (2016) The carnitine-butyrobetaine-trimethylamine-n-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis 247:64–69

    Article  CAS  PubMed  Google Scholar 

  • Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  PubMed  Google Scholar 

  • Song L, Xu M, Lopes-Virella MF, Huang Y (2001) Quercetin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells through extracellular signal-regulated kinase. Arch Biochem Biophys 391:72–78

    Article  CAS  PubMed  Google Scholar 

  • Straub RH, Pongratz G, Weidler C, Linde HJ, Kirschning CJ, Gluck T, Scholmerich J, Falk W (2005) Ablation of the sympathetic nervous system decreases gram-negative and increases gram-positive bacterial dissemination: key roles for tumor necrosis factor/phagocytes and interleukin-4/lymphocytes. J Infect Dis 192:560–572

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR Jr, Shikany JM, Lloyd-Jones DM, Launer LJ, Fodor AA, Meyer KA (2019) Gut microbiota composition and blood pressure. Hypertension 73:998–1006. https://doi.org/10.1161/HYPERTENSIONAHA.118.12109

    Article  CAS  PubMed  Google Scholar 

  • Sureda A, Bibiloni MDM, Julibert A, Bouzas C, Argelich E, Llompart I, Pons A, Tur JA (2018) Adherence to the Mediterranean diet and inflammatory markers. Nutrients 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL (2016) Trimethylamine N-oxide and prognosis in acute heart failure. Heart 102(11):841–848

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Heaney LM, Jones DJ, Ng LL (2017) Trimethylamine N-oxide and risk stratification after acute myocardial infarction. Clin Chem 63:420–428

    Article  CAS  PubMed  Google Scholar 

  • Tang WH, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124:4204–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WW, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64(18):1908–1914

    Article  CAS  PubMed  Google Scholar 

  • Tang TVH, Chen H-C, Chen C-Y, Yen CYT, Lin C-J, Prajnamitra RP, Chen L-L, Ruan S-C, Lin J-H, Lin P-J, Lu H-H, Kuo CW, Chang CM, Hall AD, Vivas EI, Shui J-W, Chen P, Hacker TA, Rey FE, Kamp TJ, Hsieh PCH (2019) Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation 139:647–659. https://doi.org/10.1161/CIRCULATIONAHA.118.03523

    Article  CAS  PubMed  Google Scholar 

  • Tilg H (2016) A gut feeling about thrombosis. N Engl J Med 374(25):2494–2496

    Article  PubMed  Google Scholar 

  • Ursell LK, Haiser HJ, Van Treuren W et al (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470–1476

    Article  CAS  PubMed  Google Scholar 

  • Vinje S, Stroes E, Nieuwdorp M, Hazen SL (2014) The gut microbiome as novel cardio-metabolic target: the time has come! Eur Heart J 35:883–887

    Article  PubMed  Google Scholar 

  • Waite JC, Skokos D (2012) Th17 response and inflammatory autoimmune diseases. Int J Inflamm 2012:819467

    Article  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X et al (2019) Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 40(7):583–594

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, Wang C, Jiao J, Wang Z, Bai Y (2020) Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front Cell Infect Microbiol 9:455

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver CT, Hatton RD, Mangan PR et al (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  • Whiteside SA, Razvi H, Dave S, Reid G, Burton JP (2015) E microbiome of the urinary tract—a role beyond infection. Nat Rev Urol 12(2):81–90

    Article  PubMed  Google Scholar 

  • Widmer RJ, Flammer AJ, Lerman LO, Lerman A (2015) The Mediterranean diet, its components, and cardiovascular disease. Am J Med 128:229–238

    Article  PubMed  Google Scholar 

  • Wlodarska M et al (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156(5):1045–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZX, Li SF, Chen H, Song JX, Gao YF, Zhang F et al (2017a) The changes of gut microbiota after acute myocardial infarction in rats. PLoS One 12:e0180717

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zhang Q, Ren Y, Ruan Z (2017b) Effect of probiotic Lactobacillus on lipid profile: a systematic review and meta-analysis of randomized, controlled trials. PLoS One 12(6):e0178868

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu D, Guan L, Jiang YX, Ma SH, Sun YN, Lei HT et al (2019a) Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis. Cardiovasc Diagn Ther 9:545–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu W, Chen C, Liu P, Panyod S, Liao B, Chen P, Kao H, Kuo H, Kuo C, Chiu THT, Chen R, Chuang H, Huang Y, Zou H, Hsu C, Chang T, Lin C, Ho C, Yu H, Sheen L, Wu M (2019b) Identification of TMAO-producer phenotype and host–diet–gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut 68:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Liu L, Guo X, Zhang S, Wang J, Zhou F et al (2017) Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: a critical role of nadph oxidase. Food Chem Toxicol 105:22–33

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wang X, Feng W, Liu Q, Zhou S, Liu Q, Cai L (2020) The gut microbiota and its interactions with cardiovascular disease. Microb Biotechnol 13(3):637–656. https://doi.org/10.1111/1751-7915.13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav R, Khan SH, Mada SB, Meena S, Kapila R, Kapila S (2019) Consumption of probiotic Lactobacillus fermentum MTCC: 5898-fermented milk attenuates dyslipidemia, oxidative stress, and inflammation in male rats fed on cholesterol-enriched diet. Probiot Antimicrob Prot 11(2):509–518

    Article  CAS  Google Scholar 

  • Yilmaz P, Parfrey LW, Yarza P et al (2014) e SILVA and “all species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648

    Article  CAS  PubMed  Google Scholar 

  • Yu HN, Zhu J, Pan WS, Shen SR, Shan WG, Das UN (2014) Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res 45:195–202

    Article  CAS  PubMed  Google Scholar 

  • Zabell A, Tang WH (2017) Targeting the microbiome in heart failure. Curr Treat Options Cardiovasc Med 19(4):27

    Article  PubMed  Google Scholar 

  • Zeng Z, Yuan Q, Yu R, Zhang J, Ma H, Chen S (2019) Ameliorative effects of probiotic Lactobacillus paracasei NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a type 2 diabetes mellitus rat model. Mol Nutr Food Res 63(22):1900457

    Article  CAS  Google Scholar 

  • Zheng Y, Yu B, Alexander D, Mosley T, Heiss G, Nettleton J, Boerwinkle E (2013) Metabolomics and incident hypertension among blacks. Hypertension 62(2):398–403. https://doi.org/10.1161/hypertensionaha.113.01166

    Article  CAS  PubMed  Google Scholar 

  • Zhu W et al (2016) Gut microbial metabolite TMAO enhances platelet Hyperreactivity and thrombosis risk. Cell 165(1):111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W et al (2017) Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 135(17):1671–1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X et al (2018) Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics 50(10):893–903

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. et al. (2023). Influence of the Gut Microbiome on Cardiovascular Health and Hypertension. In: Sobti, R., Kuhad, R.C., Lal, R., Rishi, P. (eds) Role of Microbes in Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-3126-2_15

Download citation

Publish with us

Policies and ethics