Skip to main content

Ferrite Nanoparticles for Hyperthermia Treatment Application

  • Chapter
  • First Online:
Engineered Ferrites and Their Applications

Abstract

A large category of magnetic nanoparticles (MNPs) includes ferrite nanoparticles (FNPs) which are employed extensively in biomedicine because of their suitability in living body, particularly in the treatment of hyperthermia. Nanoparticles made of ferrites are commonly employed in hot environments. Additionally, there are a number of requirements placed on nanoferrites by their use in hyperthermia therapies, including biocompatibility, less noxious, a definite amalgamation rate, small interval and amount inside the organic region to accomplish a predetermined hyperthermia temperature, and a minor “nanoferrite” dose. The effectiveness of nanoferrite materials in hyperthermia treatments is evaluated through research. As a result, this book chapter examines the benefits and drawbacks of ferrite nanoparticles in the treatment of hyperthermia, as well as enhanced ferrite-based nanocomposites to increase their effectiveness within biological molecules, which could be an encouraging future therapeutic agent for this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stefanou G, Sakellari D, Simeonidis K et al (2014) Tunable AC magnetic hyperthermia efficiency of Ni ferrite nanoparticles. IEEE Trans Magn 50.https://doi.org/10.1109/TMAG.2014.2345637

  2. Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65. https://doi.org/10.1016/J.CEJ.2006.11.001

    Article  CAS  Google Scholar 

  3. Verde EL, Landi GT, Gomes JA et al (2012) Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: comparison between experiment, linear response theory, and dynamic hysteresis simulations. J Appl Phys 111.https://doi.org/10.1063/1.4729271

  4. Epstein Y, Yanovich R (2019) Heatstroke. N Engl J Med 380:2449–2459. https://doi.org/10.1056/NEJMRA1810762

    Article  Google Scholar 

  5. Nandhini G, Shobana MK (2022) Role of ferrite nanoparticles in hyperthermia applications. J Magn Magn Mater 552:169236. https://doi.org/10.1016/J.JMMM.2022.169236

    Article  CAS  Google Scholar 

  6. Salunkhe AB, Khot VM, Thorat ND et al (2013) Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl Surf Sci 264:598–604. https://doi.org/10.1016/J.APSUSC.2012.10.073

    Article  CAS  Google Scholar 

  7. Manohar A, Vijayakanth V, Pallavolu MR, Kim KH (2021) Effects of Ni—substitution on structural, magnetic hyperthermia, photocatalytic and cytotoxicity study of MgFe2O4 nanoparticles. J Alloys Compd 879.https://doi.org/10.1016/J.JALLCOM.2021.160515

  8. Leonel AG, Mansur AAP, Carvalho SM et al (2021) Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. Nanoscale Adv 3:1029–1046. https://doi.org/10.1039/D0NA00820F

    Article  CAS  Google Scholar 

  9. Krishna Surendra M, Annapoorani S, Ansar EB et al (2014) Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles. J Nanoparticle Res 16.https://doi.org/10.1007/S11051-014-2773-8

  10. Shobana MK, Choe H (2016) Structural and electrical properties of Cr doped nickel ferrite. J Mater Sci Mater Electron 27:13052–13056. https://doi.org/10.1007/S10854-016-5446-9

    Article  CAS  Google Scholar 

  11. Wang R, Zhao T, Zhuo J et al (2020) MAPK/HOG signaling pathway induced stress-responsive damage repair is a mechanism for Pichia pastoris to survive from hyperosmotic stress. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6553

    Article  Google Scholar 

  12. Rivera RK, Polse KA (1996) Effects of hypoxia and hypercapnia on contact lens-induced corneal acidosis. Optom Vis Sci. https://doi.org/10.1097/00006324-199603000-00009

    Article  Google Scholar 

  13. Caizer C (2021) Computational study regarding CoxFe3−xO4 ferrite nanoparticles with tunable magnetic properties in superparamagnetic hyperthermia for effective alternative cancer therapy. Nanomaterials 11:3294. https://doi.org/10.3390/nano11123294

    Article  CAS  Google Scholar 

  14. Hayek SS (2019) Synthesis and characterization of CeGdZn-ferrite nanoparticles as magnetic hyperthermia application agents. Adv Mater Sci Eng 2019:1–8. https://doi.org/10.1155/2019/4868506

    Article  CAS  Google Scholar 

  15. Darwish MSA, Kim H, Lee H et al (2019) Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials 9.https://doi.org/10.3390/NANO9081176

  16. Medina MA, Oza G, Ángeles-Pascual A et al (2020) Synthesis, characterization and magnetic hyperthermia of monodispersed cobalt ferrite nanoparticles for cancer therapeutics. Molecules 25.https://doi.org/10.3390/molecules25194428

  17. Amiri S, Shokrollahi H (2013) The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C 33:1–8. https://doi.org/10.1016/J.MSEC.2012.09.003

    Article  CAS  Google Scholar 

  18. Narayanaswamy V, Al-Omari IA, Kamzin AS et al (2022) Tailoring interfacial exchange anisotropy in hard–soft core-shell ferrite nanoparticles for magnetic hyperthermia applications. Nanomaterials 12.https://doi.org/10.3390/NANO12020262

  19. Shigeoka D, Yamazaki T, Ishikawa T et al (2018) Functionalization and magnetic relaxation of ferrite nanoparticles for theranostics. IEEE Trans Magn 54.https://doi.org/10.1109/TMAG.2018.2845132

  20. Purnama B, Rahmawati R, Wijayanta AT, Suharyana (2015) Dependence of structural and magnetic properties on annealing times in co-precipitated cobalt ferrite nanoparticles. J Magn 20:207–210.https://doi.org/10.4283/JMAG.2015.20.3.207

  21. Demirci E, Manna PK, Wroczynskyj Y et al (2018) Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency. J Magn Magn Mater 458:253–260. https://doi.org/10.1016/J.JMMM.2018.03.024

    Article  CAS  Google Scholar 

  22. Ramana PV, Rao KS, Kumar KR et al (2021) A study of uncoated and coated nickel-zinc ferrite nanoparticles for magnetic hyperthermia. Mater Chem Phys 266.https://doi.org/10.1016/J.MATCHEMPHYS.2021.124546

  23. Rayan DE-R, Ismail M (2019) Magnetic properties and induction heating ability studies of spinal ferrite nanoparticles for hyperthermia treatment of tumours. Egypt J Biomed Eng Biophys https://doi.org/10.21608/EJBBE.2019.5193.1022

  24. Jalili H, Aslibeiki B, Hajalilou A et al (2022) Bimagnetic hard/soft and soft/hard ferrite nanocomposites: structural, magnetic and hyperthermia properties. Ceram Int 48:4886–4896. https://doi.org/10.1016/J.CERAMINT.2021.11.025

    Article  CAS  Google Scholar 

  25. Lee SW, Bae S, Takemura Y et al (2007) Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J Magn Magn Mater 310:2868–2870. https://doi.org/10.1016/J.JMMM.2006.11.080

    Article  CAS  Google Scholar 

  26. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magn Magn Mater 320:2390–2396. https://doi.org/10.1016/J.JMMM.2008.05.023

    Article  CAS  Google Scholar 

  27. Lickmichand M, Shaji CS, Valarmathi N et al (2019) In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications. Mater Today Proc 15:252–261. https://doi.org/10.1016/J.MATPR.2019.05.002

    Article  CAS  Google Scholar 

  28. Rauf A, Badoni H, Abu-Izneid T et al (2022) Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules 27:3194. https://doi.org/10.3390/molecules27103194

    Article  CAS  Google Scholar 

  29. Tatarchuk T, Shyichuk A, Sojka Z et al (2021) Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. J Mol Liq 328.https://doi.org/10.1016/J.MOLLIQ.2021.115375

  30. Kita E, Oda T, Kayano T et al (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D Appl Phys 43.https://doi.org/10.1088/0022-3727/43/47/474011

  31. Mallick A, Mahapatra AS, Mitra A et al (2018) Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide. J Appl Phys 123.https://doi.org/10.1063/1.5009823

  32. Aisida SO, Mahmood A, Ahmad I et al (2022) Bio-conjugate of magnesium ferrite nanoparticles in aqueous Allium cepa extract for self-heating potency. Appl Phys A Mater Sci Process 128.https://doi.org/10.1007/S00339-021-05145-W

  33. Odenbach S (1998) Ferrofluids-magnetisable liquids and their application in density separation. Magn Electr Sep 9:1–25. https://doi.org/10.1155/1998/74963

  34. Smitha P, Singh I, Najim M et al (2016) Development of thin broad band radar absorbing materials using nanostructured spinel ferrites. J Mater Sci Mater Electron 27:7731–7737. https://doi.org/10.1007/S10854-016-4760-6

    Article  CAS  Google Scholar 

  35. Nasrin S, Chowdhury FUZ, Hoque SM (2019) Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J Magn Magn Mater 479:126–134. https://doi.org/10.1016/J.JMMM.2019.02.010

    Article  CAS  Google Scholar 

  36. Sneed PK, Stauffer PR, McDermott MW et al (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40:287–295. https://doi.org/10.1016/S0360-3016(97)00731-1

    Article  CAS  Google Scholar 

  37. Karbelkar AA, Reynolds EE, Ahlmark R, Furst AL (2021) A microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Cent Sci 7:1718–1727https://doi.org/10.1021/acscentsci.1c00931

  38. Casa DJ, Demartini JK, Michael F et al (2015) National athletic trainers’ association position statement: exertional heat illnesses. 50:986–1000.https://doi.org/10.4085/1062-6050-50.9.07

  39. Van Nostrand EL, Freese P, Pratt GA et al (2020) A large-scale binding and functional map of human RNA-binding proteins. Nature 583:711–719. https://doi.org/10.1038/S41586-020-2077-3

    Article  Google Scholar 

  40. Truettner JS, Bramlett HM, Dalton Dietrich W Hyperthermia and mild traumatic brain injury: effects on inflammation and the cerebral vasculature. https://doi.org/10.1089/neu.2017.5303

  41. Frink M, Floh S, Griensven M Van et al (2012) Facts and fiction : the impact of hypothermia on molecular mechanisms following major challenge 2012. https://doi.org/10.1155/2012/762840

  42. Wills S (2015) Extremes of temperature: hyperthermia. Encycl Forensic Leg Med Second Ed 476–485.https://doi.org/10.1016/B978-0-12-800034-2.00175-0

  43. Falk MH, Issels RD (2001) Hyperthermia in oncology. Int J Hyperthermia 17:1–18. https://doi.org/10.1080/02656730150201552

    Article  CAS  Google Scholar 

  44. Seegenschmiedt MH, Sauer R (1993) Interstitial and intracavitary thermoradiotherapy.https://doi.org/10.1007/978-3-642-84801-8

  45. Im DS (2021) Treatment of aggression in adults with autism spectrum disorder: a review

    Google Scholar 

  46. Elbeshir EIA (2016) Evaluation of thermal properties of ferrite nanoparticles for magnetic hyperthermia treatment. 5:2014–2017

    Google Scholar 

  47. Tarawneh R, Cummings JL (2017) Depression, psychosis, and agitation in stroke. Prim Cerebrovasc Dis Second Ed 767–774.https://doi.org/10.1016/B978-0-12-803058-5.00147-8

  48. McGugan EA (2001) Hyperpyrexia in the emergency department. Emerg Med (Fremantle) 13:116–120. https://doi.org/10.1046/J.1442-2026.2001.00189.X

    Article  CAS  Google Scholar 

  49. El-Radhi AS, Carroll J, Klein N (eds) (2009) Hyperthermia. In: Clinical manual of fever in children. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78598-9_2

  50. Onyedikachi OA, Aisida SO, Agbogu A et al (2022) Zinc ferrite nanoparticles capped with Gongronema latifolium for moderate hyperthermia applications. Appl Phys A Mater Sci Process 128.https://doi.org/10.1007/S00339-021-05244-8

  51. Xing M, Mohapatra J, Beatty J et al (2021) Iron-based magnetic nanoparticles for multimodal hyperthermia heating. J Alloys Compd 871.https://doi.org/10.1016/J.JALLCOM.2021.159475

  52. Kharat PB, Somvanshi SB, Khirade PP, Jadhav KM (2020) Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5:23378–23384. https://doi.org/10.1021/ACSOMEGA.0C03332

    Article  CAS  Google Scholar 

  53. Wust P, Hildebrandt B, Sreenivasa G et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497. https://doi.org/10.1016/S1470-2045(02)00818-5

    Article  CAS  Google Scholar 

  54. Habash RWY (2018) Therapeutic hyperthermia. Handb Clin Neurol 157:853–868. https://doi.org/10.1016/B978-0-444-64074-1.00053-7

    Article  Google Scholar 

  55. da Silva FAS, de Campos MF (2020) Study of heating curves generated by magnetite nanoparticles aiming application in magnetic hyperthermia. Brazilian J Chem Eng 37:543–553. https://doi.org/10.1007/S43153-020-00063-5

    Article  Google Scholar 

  56. Koutsoumbou X, Tsiaoussis I, Bulai GA et al (2021) CoFe2-xRExO4 (RE = Dy, Yb, Gd) magnetic nanoparticles for biomedical applications. Phys B Condens Matter 606.https://doi.org/10.1016/J.PHYSB.2021.412849

  57. Ansari M, Bigham A, Hassanzadeh Tabrizi SA, Abbastabar Ahangar H (2018) Copper-substituted spinel Zn-Mg ferrite nanoparticles as potential heating agents for hyperthermia. J Am Ceram Soc 101:3649–3661. https://doi.org/10.1111/JACE.15510

    Article  CAS  Google Scholar 

  58. Peng E, Choo ESG, Chandrasekharan P et al (2012) Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8:3620–3630. https://doi.org/10.1002/smll.201201427

    Article  CAS  Google Scholar 

  59. Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports Pract Oncol Radiother 18:397–400. https://doi.org/10.1016/J.RPOR.2013.09.011

    Article  Google Scholar 

  60. Darvish M, Nasrabadi N, Fotovat F et al (2022) Biosynthesis of Zn-doped CuFe2O4 nanoparticles and their cytotoxic activity. Sci Rep 12.https://doi.org/10.1038/S41598-022-13692-2

  61. Guo T, Dou F, Lin M et al (2019) Biological characteristics and carrier functions of pegylated manganese zinc ferrite nanoparticles. J Nanomater 2019.https://doi.org/10.1155/2019/6854710

  62. https://help.biorender.com/en/articles/3619405-how-do-i-cite-biorender. Assessed 23 Oct 2022

  63. https://www.cdc.gov/disasters/extremeheat/heattips.html. Assessed 23 Oct 2022

  64. Laitano O, Leon LR, Roberts WO, Sawka MN (2019) Controversies in exertional heat stroke diagnosis, prevention, and treatment. J Appl Physiol 127:1338–1348. https://doi.org/10.1152/JAPPLPHYSIOL.00452.2019

    Article  CAS  Google Scholar 

  65. Albino M, Fantechi E, Innocenti C et al (2019) Role of Zn2+ substitution on the magnetic, hyperthermic, and relaxometric properties of cobalt ferrite nanoparticles. J Phys Chem C 123:6148–6157. https://doi.org/10.1021/ACS.JPCC.8B10998

    Article  CAS  Google Scholar 

  66. Thunugunta T, Reddy AC, Reddy LDC (2015) Green synthesis of nanoparticles: current prospects. Nanotechnol Rev 4(40):303–323

    Google Scholar 

  67. Selim YA, Azb MA, Ragab I, El-azim MHMA (2020) Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep 1–9.https://doi.org/10.1038/s41598-020-60541-1

  68. Mahmoudi K, Bouras A, Bozec D et al (2018) Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperth 34:1316–1328. https://doi.org/10.1080/02656736.2018.1430867

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the facilities offered by Dr. Yashwant Singh Parmar Govt. P.G. College Nahan, District Sirmour, Himachal Pradesh, and ICMR-Regional Medical Research Center for the Scholar’s host institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Kumar, N., Sharma, M.V., Kumar, S., Kumar, A.V. (2023). Ferrite Nanoparticles for Hyperthermia Treatment Application. In: Sharma, P., Bhargava, G.K., Bhardwaj, S., Sharma, I. (eds) Engineered Ferrites and Their Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-2583-4_5

Download citation

Publish with us

Policies and ethics