Skip to main content

Principles of Fracture Fixation Techniques

  • Chapter
  • First Online:
Textbook of Veterinary Orthopaedic Surgery

Abstract

You will be able to understand the following after reading this chapter:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, S.B., and J.F. Fessler. 1988. Fracture repair. In Textbook of large animal surgery, ed. F.W. Oehme, 2nd ed. Baltimore: Williams and Wilkins.

    Google Scholar 

  2. Anderson, D.E., and St. Jean, G. 2008. Management of fractures in field settings. The Veterinary Clinics of North America. Food Animal Practice 24: 567–582.

    Article  PubMed  Google Scholar 

  3. Charnley, J. 1963. 1963. The mechanics of conservative treatment. In The closed treatment of common fractures, ed. J. Charnley, 43–59. Philadelphia: Williams & Wilkins.

    Google Scholar 

  4. Dyce, J. 1998. Conservative management of fractures. In BSAVA manual of small animal fracture repair and management, ed. A.R. Coughlan and A. Miller. Cheltenham: British Small Animal Veterinary Association.

    Google Scholar 

  5. Harasen, G. 2012. Orthopedic therapy under wraps: the pros and cons of external coaptation. The Canadian Veterinary Journal 53: 679–680.

    PubMed  PubMed Central  Google Scholar 

  6. Leighton, R.L. 1991. Principles of conservative fracture management: splints and casts. In: fracture management. I, Boudrieau RJ (ed.). Semin Vet Med Surg Small Anim. 6: 39–51.

    Google Scholar 

  7. Nunamaker, D.M. 1985. Methods of closed fixation. In Textbook of small animal orthopaedics, ed. C.D. Newton and D.M. Nunamaker, 1st ed., 249–259. Philadelphia: JB Lippincott.

    Google Scholar 

  8. Hohn, R.B. 1975. Principles and application of plaster casts. The Veterinary Clinics of North America. Small Animal Practice 5: 291–303.

    CAS  Google Scholar 

  9. Levet, T., A. Martens, L. Devisscher, L. Duchateau, L. Bogaert, and L. Vlaminck. 2009. Distal limb cast sores in horses: risk factors and early detection using thermography. Equine Veterinary Journal 41: 18–23.

    Article  CAS  PubMed  Google Scholar 

  10. Meeson, R.L., C. Davidson, and G.I. Arthurs. 2011. Soft-tissue injuries associated with cast application for distal limb orthopedic conditions. A retrospective study of sixty dogs and cats. Veterinary and Comparative Orthopaedics and Traumatology 24: 126–131.

    Article  CAS  PubMed  Google Scholar 

  11. Tomlinson, J. 1991. Complications with fractures repaired with casts and splints. The Veterinary Clinics of North America. Small Animal Practice 21: 735–744.

    Article  CAS  PubMed  Google Scholar 

  12. Sangwan, V., G.P. Yadav, and A. Kumar. 2020. Aluminium splint incorporated fibreglass cast preserves limb function in bovines with olecranon fracture. Veterinary and Comparative Orthopaedics and Traumatology 33: 434–442.

    Article  PubMed  Google Scholar 

  13. Singh, A.P., G.R. Singh, H.P. Aithal, and P. Singh. 2020. Section D – fractures, chapter on the musculoskeletal system. In Ruminant surgery: A textbook of the surgical diseases of cattle, buffaloes, camels, sheep and goats, ed. J. Singh, S. Singh, and R.P.S. Tyagi, 2nd ed. New Delhi: CBS Publishers and Distributers.

    Google Scholar 

  14. Solanki, K.P., P.B. Patel, V.D. Dodia, J.V. Vadalia, R.J. Raval, H.M. Padheriya, and M.D. Khatariya. 2016. Comparative effectiveness of plaster of Paris and fibre glass casts in the management of long bone fractures in canines. International Journal of Environmental Science and Technology 5: 3512–3515.

    Google Scholar 

  15. Wilson, D.G., and R. Vanderby Jr. 1995. An evaluation of six synthetic casting materials. Veterinary Surgery 24: 55–59.

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, D.G., and R. Vanderby Jr. 1995. An evaluation of fiberglass cast application techniques. Veterinary Surgery 24: 118–121.

    Article  CAS  PubMed  Google Scholar 

  17. Schroeder, E.F. 1933. The traction principle in treating fractures of the dog and cat. The North American Veterinarian 14: 32–36.

    Google Scholar 

  18. Adams, S.B., and J.F. Fessler. 1983. Treatment of radial, ulnar and tibial fractures in cattle, using a modified Thomas splint cast combination. Journal of the American Veterinary Medical Association 183: 430–433.

    CAS  PubMed  Google Scholar 

  19. Baird, A.N., and S.B. Adams. 2014. Use of the Thomas splint and cast combination, walker splint, and spica bandage with an over the shoulder splint for the treatment of fractures of the upper limbs in cattle. The Veterinary Clinics of North America. Food Animal Practice 30: 77–90.

    Article  PubMed  Google Scholar 

  20. Ladefoged, S., S. Grulke, V. Busoni, D. Serteyn, A. Salciccia, and D. Verwilghen. 2017. Modified Thomas splint-cast combination for the management of limb fractures in small equids. Veterinary Surgery 46: 381–388.

    Article  PubMed  Google Scholar 

  21. Howard, P.E. 1991. Principles of intramedullary pin and wire fixation. In Fracture management. I, Boudrieau RJ (ed.). Semin Vet Med Surg Small Anim 6: 52–67.

    Google Scholar 

  22. Nunamaker, D.M. 1985. Methods of internal fixation. In Textbook of small animal Orthopaedics, ed. C.D. Newton and D.M. Nunamaker, 1st ed., 261–286. Philadelphia: JB Lippincott.

    Google Scholar 

  23. Rudy, R.L. 1975. Principles of intramedullary pinning. The Veterinary Clinics of North America. Small Animal Practice 5: 209–228.

    CAS  Google Scholar 

  24. Martin, R.A., J.L. Milton, P.K. Shires, et al. 1988. Closed reduction and blind pinning of selected fractures and luxations in dogs and cats. Compendium on Continuing Education for the Practicing Veterinarian 10: 784–799.

    Google Scholar 

  25. Newmann, M.E., and J.L. Milton. 1989. Closed reduction and blind pinning of 29 femoral and tibial fractures in 27 dogs and cats. Journal of the American Animal Hospital Association 25: 61–68.

    Google Scholar 

  26. De Young, D.J., and C.W. Probst. 1985. Methods of fracture fixation. In Textbook of small animal surgery, ed. D.H. Slatter, vol. 2, 1949–2014. Philadelphia: PA Saunders.

    Google Scholar 

  27. Chaffee, V.W. 1977. Multiple (stacked) intramedullary pin fixation of humeral and femoral fractures. Journal of the American Animal Hospital Association 13: 599–601.

    Google Scholar 

  28. Rush, L.V. 1959. Atlas of Rush pin technics. Berivon

    Google Scholar 

  29. Aithal, H.P., G.R. Singh, A.K. Sharma, and Amarpal. 1998. Modified technique of single pin fixation and cross intramedullary pin fixation technique for supracondylar femoral fracture in dogs: A comparative study. Indian Journal of Veterinary Surgery 19: 84–89.

    Google Scholar 

  30. Whitney, W.O., and S.C. Schrader. 1987. Dynamic intramedullary crosspinning technique for repair of distal femoral fractures in dogs and cats: 71 cases (1981-1985). Journal of the American Veterinary Medical Association 191: 1133–1138.

    CAS  PubMed  Google Scholar 

  31. Jenny, J. 1950. Kuntscher’s medullary mailing in femur fractures of the dog. Journal of the American Veterinary Medical Association 117: 381–387.

    CAS  PubMed  Google Scholar 

  32. Déjardin, L.M., K.L. Perry, D.J.F. von Pfeil, and L.P. Guiot. 2020. Interlocking nails and minimally invasive osteosynthesis. The Veterinary Clinics of North America. Small Animal Practice 50 (1): 67–100.

    Article  PubMed  Google Scholar 

  33. Dueland, R.T., K.A. Johnson, S.C. Roe, M.H. Engen, and A.S. Lesser. 1999. Interlocking nail treatment of diaphyseal long-bone fractures in dogs. Journal of the American Veterinary Medical Association 214 (1): 59–66.

    CAS  PubMed  Google Scholar 

  34. Durall, I., and M.C. Diaz. 1996. Early experience with the use of an interlocking nail for the repair of canine femoral shaft fractures. Veterinary Surgery 25: 397–406.

    Article  CAS  PubMed  Google Scholar 

  35. Larin, A., C.S. Eich, R.B. Parker, and W.P. Stubbs. 2001. Repair of diaphyseal fractures in cats using interlocking intramedullary nails: 12 cases (1996-2000). Journal of the American Veterinary Medical Association 219 (8): 1098–1104.

    Article  CAS  PubMed  Google Scholar 

  36. Raghunath, M., and S.S. Singh. 2003. Use of static intramedullary interlocking nail for repair of comminuted/segmental femoral diaphyseal fractures in four dogs. Indian Journal of Veterinary Surgery 24: 89–91.

    Google Scholar 

  37. Wheeler, J.L., W.P. Stubbs, D.D. Lewis, and A.R. Cross. 2004. Intramedullary interlocking nail fixation in dogs and cats: biomechanics instrumentation. Compendium on Continuing Education for the Practising Veterinarian -North American 26 (7): 519–529.

    Google Scholar 

  38. Bellon, J., and P.-Y. Mulon. 2011. Use of a novel intramedullary nail for femoral fracture repair in calves: 25 cases (2008-2009). Journal of the American Veterinary Medical Association 238: 1490–1496.

    Article  PubMed  Google Scholar 

  39. Bhat, S.A., H.P. Aithal, P. Kinjavdekar, Amarpal, M.M.S. Zama, P.C. Gope, A.M. Pawde, R.A. Ahmad, and M.B. Gugjoo. 2014. An in vitro biomechanical investigation of an intramedullary interlocking nail system developed for buffalo tibia. Veterinary and Comparative Orthopaedics and Traumatology 27: 36–44.

    Article  CAS  PubMed  Google Scholar 

  40. Dilipkumar, D., M. Patil, B.V. Shivaprakash, Bhagavantappa B.N. Venkatgiri, D. Jahangir, A. Mahesh, and S. Arunkumar. 2019. Intramedullary interlocking nail fixation for repair of long bone fractures in cattle. Indian Journal of Veterinary Surgery 40: 48–51.

    Google Scholar 

  41. Madhu, D.N. 2015. Development and evaluation of interlocking nail and tubular locking plate for management of femur fracture in large ruminants. PhD thesis submitted to Deemed University, Indian Veterinary Research Institute, Izatnagar- 243 122 (UP), India.

    Google Scholar 

  42. Marturello, D.M., K.M. Gazzola, and L.M. Déjardin. 2019. Tibial fracture repair with angle-stable interlocking nailing in 2 calves. Veterinary Surgery 48: 597–606.

    Article  PubMed  Google Scholar 

  43. Nuss, K. 2014. Plates, pins and interlocking nails. The Veterinary Clinics of North America. Food Animal Practice 30: 91–126.

    Article  PubMed  Google Scholar 

  44. McClure, S.R., J.P. Watkins, and R.B. Ashman. 1998. An in vivo evaluation of intramedullary interlocking nail fixation of transverse femoral osteotomies in foals. Veterinary Surgery 27: 29–36.

    Article  CAS  PubMed  Google Scholar 

  45. Watkins, J.P., and R.B. Ashman. 1990. Intramedullary interlocking nail fixation in foals: effects on normal growth and development of the humerus. Veterinary Surgery 19: 80.

    Google Scholar 

  46. Boudrieau, R.J. 1991. Principles of screw and plate fixation. Seminars in Veterinary Medicine and Surgery (Small Animal) 6 (1): 75–89.

    CAS  PubMed  Google Scholar 

  47. Brinker, W.O., R.B. Hohn, and W.D. Prieur. 1984. Manual of internal fixation in small animals. New York: Springer.

    Google Scholar 

  48. Igna, C., and L. Schuszler. 2010. Current concepts of internal plate fixation of fractures. Bulletin of University of Agricultural Sciences and Veterinary Medicine 67 (2): 118–124.

    Google Scholar 

  49. Muller, M.E., M. Allgower, R. Schneider, and H. Willenegger. 1979. Manual of internal fixation. 2nd ed. New York: Springer-Verlag.

    Book  Google Scholar 

  50. Allgower, M., R. Ehrsahm, and R. Ganz. 1969. Clinical experience with a new compression plate “DCP”. Acta Orthopaedica Scandinavica. Supplementum 125: 46–61.

    Google Scholar 

  51. Allgower, M., S.M. Perren, and P. Matter. 1970. A new plate for internal fixation-the dynamic compression (DCP). Injury 2: 40–47.

    Article  CAS  PubMed  Google Scholar 

  52. Ayyappan, S. 2013. AO techniques of dynamic compression plate (DCP) and limited contact dynamic compression plate (LC-DCP) application for fracture management in dogs. Advances in Animal and Veterinary Sciences 1 (2S): 33–36.

    Google Scholar 

  53. Perren, S.M., M. Russenberger, S. Steinemann, M.E. Muller, and M. Allgower. 1969. A dynamic compression plate. Acta Orthopaedica Scandinavica. Supplementum 125: 31–41.

    CAS  PubMed  Google Scholar 

  54. Schatzer, J. 1991. Screws and plates and their applications. In Manual of internal fixation techniques recommended by the AO-ASIF group, ed. M. Allgower, 3rd ed., 179–199. Cham: Springer.

    Chapter  Google Scholar 

  55. Uhthoff, H.K., P. Poitras, and D.S. Backman. 2006. Internal plate fixation of fractures: short history and recent developments. Journal of Orthopaedic Science 11 (2): 118–126.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Perren, S.M., K. Klaue, O. Pohler, M. Predieri, S. Steinemann, and E. Gautier. 1990. The limited contact dynamic compression plate (LC-DCP). Archives of Orthopaedic and Trauma Surgery 109: 304–310.

    Article  CAS  PubMed  Google Scholar 

  57. Nunamaker, D.M., K.F. Bowman, D.W. Richardson, and M. Herring. 1986. Plate luting: a preliminary report of its use in horses. Veterinary Surgery 15 (4): 289–293.

    Article  Google Scholar 

  58. Nunamaker, D.M., D.W. Richardson, and D.M. Butterweck. 1991. Mechanical and biological effects of plate luting. Journal of Orthopaedic Trauma 5 (2): 138–145.

    Article  CAS  PubMed  Google Scholar 

  59. Bruese, S., J. Dee, and W.D. Prieur. 1989. Internal fixation with a veterinary cuttable plate in small animals. Veterinary and Comparative Orthopaedics and Traumatology 1: 40–46.

    Google Scholar 

  60. Theoret, M.C., and N.M.M. Moens. 2007. The use of veterinary cuttable plates for carpal and tarsal arthrodesis in small dogs and cats. The Canadian Veterinary Journal 48 (2): 165–168.

    PubMed  PubMed Central  Google Scholar 

  61. Lewis, D.D., R.T. van Ee, M.G. Oakes, and A.D. Elkins. 1993. Use of reconstruction plates for stabilization of fractures and osteotomies involving the supracondylar region of the femur. Journal of the American Animal Hospital Association 29: 171–178.

    Google Scholar 

  62. Anson, L.W., D.J. De Young, D.C. Richardson, and C.W. Betts. 1988. Clinical evaluation of canine acetabular fractures stabilized with an acetabular plate. Veterinary Surgery 17: 220–225.

    Article  CAS  PubMed  Google Scholar 

  63. Braden, T.D., and W.D. Trieur. 1986. New plate for acetabular fractures: technique of application and long-term follow-up evaluation. Journal of the American Veterinary Medical Association 188: 1183–1186.

    CAS  PubMed  Google Scholar 

  64. Brinker, W.O., R.B. Hohn, and W.D. Prieur. 1998. Manual of internal fixation in small animals. Berlin: Springer.

    Book  Google Scholar 

  65. Barnhart, M.D., and K.C. Maritato. 2018. Locking plates in veterinary orthopaedics. ACVS Foundation, Wiley Blackwell. Onlinelibrary.wiley.com/doi/book/10.1002/9781119380139

  66. Frigg, R. 2001. Locking compression plate (LCP). An osteosynthesis plate based on the dynamic compression plate and the point contact fixator (PC-fix). Injury 32: 63–66.

    Article  PubMed  Google Scholar 

  67. Frigg, R. 2003. Development of locking compression plate. Injury 34: S-B6-10.

    Article  Google Scholar 

  68. Gautier, E., and C. Sommer. 2003. Guidelines for the clinical application of the LCP. Injury 34: S-B63-76.

    Article  Google Scholar 

  69. Kowaleski, M. 2009. Locking plate systems: LCP. In: Proceedings spring scientific meeting, British veterinary Orthopaedic association, Moores A (ed.), 1st April 2009, Austin Court, Birmingham. p 1–3.

    Google Scholar 

  70. Kowaleski, M. 2009. Locking plate systems: SOP and ALPS. In: proceedings spring scientific meeting, British veterinary Orthopaedic association. Moores A (ed.), 1st April 2009, Austin Court, Birmingham. pp. 4–9.

    Google Scholar 

  71. Wagner, M. 2003. General principles for the clinical use of the LCP. Injury 34: S-B31-B42.

    Article  Google Scholar 

  72. Wagner, M., and R. Frigg. 2006. AO manual of fracture management, internal fixators: concepts and cases using LCP and LISS, 1–57. Clavadelerstrasse: AO Publishing.

    Google Scholar 

  73. Aguila, A.Z., J.M. Manos, A.S. Orlansky, R.J. Todhunter, E.J. Trotter, and M.C.H. Van der Meulen. 2005. In vitro biomechanical comparison of limited contact dynamic compression plate and locking compression plate. Veterinary and Comparative Orthopaedics and Traumatology 18: 220–226.

    Article  CAS  PubMed  Google Scholar 

  74. Egol, K.A., E.N. Kubiask, E. Fulkerson, F.J. Kummer, and K.J. Koval. 2004. Biomechanics of locked plates and screws. Journal of Orthopaedic Trauma 18 (8): 488–493.

    Article  PubMed  Google Scholar 

  75. Keller, M., and K. Voss. 2002. AO vet news. UniLock: applications in small animals. AO Dialogue 15: 20–21.

    Google Scholar 

  76. Gamper, S., A. Steiner, K. Nuss, S. Ohlerth, A. Fürst, J.G. Ferguson, J.A. Auer, and C. Lischer. 2006. Clinical evaluation of the CRIF 4.5/5.5 system for long-bone fracture repair in cattle. Veterinary Surgery 35: 361–368.

    Article  PubMed  Google Scholar 

  77. Reems, M.R., B.S. Beale, and D.A. Hulse. 2003. Use of a clamp-rod construct and principles of biological osteosynthesis for repair of diaphyseal fractures in dogs and cats: 47 cases (1994-2001). Journal of the American Veterinary Medical Association 223: 330–335.

    Article  PubMed  Google Scholar 

  78. Zahn, K., and U. Matis. 2004. The clamp rod internal fixator- application and results in 120 small animal fracture patients. Veterinary and Comparative Orthopaedics and Traumatology 17: 110–120.

    Article  Google Scholar 

  79. Ahmad, R.A. 2013. Development and evaluation of designer locking plates for fixation of tibial and radial fractures in large ruminants. PhD thesis submitted to Deemed University, Indian Veterinary Research Institute, Izatnagar- 243 122 (UP), India.

    Google Scholar 

  80. Ahmad, R.A., H.P. Aithal, Amarpal, P. Kinjavdekar, P.C. Gope, and D.N. Madhu. 2021. Biomechanical properties of a novel locking compression plate to stabilize oblique tibial osteotomies in buffaloes. Veterinary Surgery 50: 444–454.

    Article  PubMed  Google Scholar 

  81. Hudson, C.C., A. Pozzi, and D.D. Lewis. 2009. Minimally invasive plate osteosynthesis: applications and techniques in dogs and cats. Veterinary and Comparative Orthopaedics and Traumatology 3: 175–182.

    Article  Google Scholar 

  82. Krettek, C., M. Muller, and T. Miclau. 2001. Evolution of minimally invasive plate osteosynthesis (MIPO) in the femur. Injury 32 (Suppl 3): C14–C23.

    Article  Google Scholar 

  83. Schmokel, H.G., S. Stein, H. Radke, K. Hurter, and P. Schawalder. 2007. Treatment of tibial fractures with plates using minimally invasive percutaneous osteosynthesis in dogs and cats. The Journal of Small Animal Practice 48: 157–160.

    Article  CAS  PubMed  Google Scholar 

  84. Tong, G., and S. Bavonratanvech. 2007. AO manual of fracture management: minimally invasive plate osteosynthesis (MIPO), 3–7. Clavadelerstrasse: AO Publishing.

    Google Scholar 

  85. Morshead, D. 1982. Fracture fixation with Kirschner wires. Compendium on Continuing Education for the Practicing Veterinarian 4: 491–501.

    Google Scholar 

  86. Gambardella, P.C. 1980. Full cerclage wires for fixation of long bone fractures. Compendium on Continuing Education for the Practicing Veterinarian 2: 665–671.

    Google Scholar 

  87. Withrow, S.J. 1978. Use and misuse of full cerclage wires in fracture repair. The Veterinary Clinics of North America. Small Animal Practice 8: 201–212.

    CAS  Google Scholar 

  88. Birchard, S.J., and R.M. Bright. 1981. The tension band wire for fracture repair in the dog. Compendium on Continuing Education for the Practising Veterinarian 3: 37–41.

    Google Scholar 

  89. Petit, G.B., and D.H.J.S. Slatter. 1973. Tension band wiring for fixation of avulsed canine tibial tuberosity. Journal of the American Veterinary Medical Association 163: 242–244.

    Google Scholar 

  90. Corr, S.A. 2005. Practical guide to linear external skeletal fixation in small animals. In Practice 27 (2): 76–85.

    Article  Google Scholar 

  91. Bilgili, H. 2004. Circular external fixation system of Ilizarov: part V. fracture treatment by the Ilizarov technique. Veteriner Cerrahi Dergisi 10 (1–2): 75–89.

    Google Scholar 

  92. Carnmichael, S. 1991. The external fixator in small animal orthopaedics. The Journal of Small Animal Practice 32: 486–493.

    Article  Google Scholar 

  93. Egger, E.L. 1998. External skeletal fixation. In Current techniques in small animal surgery, Bojrab, ed. M.J., 4th ed., 941–950. Philadelphia.

    Google Scholar 

  94. Harari, J., T. Bebchuk, B. Segun, and J. Lincoln. 1996. Closed repair of tibial and radial fractures with external skeletal fixator. Compendium on Continuing Education for the Practising Veterinarian 18: 651–657.

    Google Scholar 

  95. Ilizarov, G.A. 1992. The apparatus: components and biomechanical principles of application. In Transosseous Osteosynthesis, ed. S.A. Green, 63–136. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  96. Johnson, A.L., and C.E. DeCamo. 1992. External skeletal fixation- linear fixation. The Veterinary Clinics of North America. Small Animal Practice 29: 1135–1143.

    Article  Google Scholar 

  97. Lewis, D.D., A.R. Cross, S. Carmichael, and M.A. Anderson. 2001. Recent advances in external skeletal fixation. The Journal of Small Animal Practice 42: 103–112.

    Article  CAS  PubMed  Google Scholar 

  98. Marcellin-Little, D.J. 1999. Fracture treatment with circular external fixation. The Veterinary Clinics of North America. Small Animal Practice 29: 1153–1170.

    Article  CAS  PubMed  Google Scholar 

  99. Ozsoy, S., and K. Altunatmaz. 2003. Treatment of extremity fractures in dogs using external fixators with closed reduction and limited open approach. Veterinary Medicine Czech 48: 133–140.

    Article  Google Scholar 

  100. Aron, D.N., J.P. Toombs, and S.C. Hollingworth. 1986. Primary treatment of severe fractures by external skeletal fixation: threaded pins compared with smooth pins. Journal of the American Animal Hospital Association 22: 659–670.

    Google Scholar 

  101. Toombs, J.P. 1992. Trans articular application of external skeletal fixation. The Veterinary Clinics of North America. Small Animal Practice 22: 181–194.

    Article  CAS  PubMed  Google Scholar 

  102. Morshead, D., and E.B. Leeds. 1984. Kirschner-Ehmer apparatus immobilization following Achilles tendon repair in six dogs. Veterinary Surgery 13: 11–14.

    Article  Google Scholar 

  103. Bilgili, H., and B. Olcay. 1998. Circular external fixation system of Ilizarov: part I. history, components, indications and principles of system. Turkish Journal of Veterinary Surgery 4: 62–67.

    Google Scholar 

  104. Johnson, A.L., J.A.C. Eurel, J.M. Losonsky, and E.L. Egger. 1998. Biomechanics and biology of fracture healing with external skeletal fixation. Compendium on Continuing Education for the Practising Veterinarian 20: 487–500.

    Google Scholar 

  105. Toombs, J.P. 1991. Principles of external skeletal fixation using the Kirschner-Ehmer splint. Seminars in Veterinary Medicine and Surgery (Small Animal) 6 (1): 68–74.

    CAS  PubMed  Google Scholar 

  106. Egger, E.L., D.G. Lewallen, and R.W. Norrdin, et al. 1988. Effect of destabilizing rigid external fixation on healing of unstable canine osteotomies. Transactions of the 34th Annual Meeting of Orthopedic Research Society 13: 302.

    Google Scholar 

  107. Aron, D.N., and J.P. Toombs. 1984. Updated principles of external skeletal fixation. Compendium on Continuing Education for the Practicing Veterinarian 6: 845–858.

    Google Scholar 

  108. Green, S.A. 1991. The Ilizarov method. Rancho technique. The Orthopedic Clinics of North America 22: 677–688.

    Article  CAS  PubMed  Google Scholar 

  109. Hierholzer, G., R. Kleining, G. Horster, and P. Zemenides. 1978. External fixation- classification and indications. Archives of Orthopaedic and Trauma Surgery 92: 175–182.

    Article  CAS  Google Scholar 

  110. Egger, E.L. 1990. Biomechanics and fracture healing with external fixation. In Proceedings 18th annual veterinary surgical forum, Chicago, IL. p 321–323.

    Google Scholar 

  111. Kummer, F.J. 1992. Biomechanics of the Ilizarov external fixator. Clinical Orthopaedics 280: 11–14.

    Article  Google Scholar 

  112. Kürüm, B., H. Bilgili, and C. Yardımcı. 2002. Circular external fixation system of Ilizarov. Part IV: biomechanical properties of the system. Turkish Journal of Veterinary and Animal Sciences 8: 107–115.

    Google Scholar 

  113. Lewis, D.D., D.G. Bronson, M.L. Samchukov, R.D. Welch, and J.T. Stallings. 1998. Biomechanics of circular external skeletal fixation. Veterinary Surgery 27: 454–464.

    Article  CAS  PubMed  Google Scholar 

  114. Paley, D. 1991. Biomechanics of the Ilizarov external fixator. In Operative principles of Ilizarov, ed. A. Bianchi-Maiocchi and J. Aronson, 33–41. Milan: Medi Surgical Video.

    Google Scholar 

  115. Kraus, K.H., H.M. Wotton, R.J. Boudrieau, L. Schwarz, D. Diamond, and A. Minihan. 1998. Type-II external fixation, using new clamps and positive-profile threaded pins, for treatment of fractures of the radius and tibia in dogs. Journal of the American Veterinary Medical Association 212: 1267–1270.

    CAS  PubMed  Google Scholar 

  116. Aron, D.N., and C.W. Dewey. 1992. Application and postoperative management of external skeletal fixators. The Veterinary Clinics of North America. Small Animal Practice 22 (1): 69–98.

    Article  CAS  PubMed  Google Scholar 

  117. Egger, E.L. 1990. Principles of fracture management- the use of external skeletal fixation. In Canine orthopedics, ed. W.G. Whittick, 2nd ed., 248–264. Philadelphia: Lea & Febiger.

    Google Scholar 

  118. Ramakumar, V., M. Manohar, and R.P.S. Tyagi. 1973. Hanging pin cast for oblique fracture of tibia in a cow-A disadvantage. The Indian Veterinary Journal 50: 714–716.

    Google Scholar 

  119. Lescun, T.B., S.R. McClure, M.P. Ward, C. Downs, D.A. Wilson, S.B. Adams, J.F. Hawkins, and E.L. Reinertson. 2007. Evaluation of transfixation casting for treatment of third metacarpal, third metatarsal, and phalangeal fractures in horses: 37 cases (1994-2004). Journal of the American Veterinary Medical Association 230: 1340–1349.

    Article  PubMed  Google Scholar 

  120. Lozier, J.W., A.J. Niehaus, A. Muir, and J. Lakritz. 2018. Short- and long-term success of transfixation pin casts used to stabilize long bone fractures in ruminants. The Canadian Veterinary Journal 59: 635–641.

    PubMed  PubMed Central  Google Scholar 

  121. Aithal, H.P. 2015. Management of fractures. In A handbook on field veterinary surgery, ed. M.M.S. Zama, H.P. Aithal, and A.M. Pawde, 145–154. New Delhi: Published by Astral.

    Google Scholar 

  122. Aithal, H.P., Amarpal, P. Kinjavdekar, A.M. Pawde, K. Pratap, P. Kumar, D.K. Sinha, and H.C Setia. 2009. A novel bilateral linear external skeletal fixation device for treatment of long bone fractures in large animals: A report of 12 clinical cases. 33rd Congress of ISVS held at Veterinary college, GADVASU, Ludhiana (Punjab), 11–13 Nov. 2009, Abst: OR-1.

    Google Scholar 

  123. Dubey, P., H.P. Aithal, P. Kinjavdekar, Amarpal, P.C. Gope, D.N. Madhu, Rohit Kumar, T.B. Sivanarayanan, A.M. Pawde, and M.M.S. Zama. 2021. A comparative in vitro biomechanical investigation of a novel bilateral linear fixator vs. circular and multiplanar epoxy-pin external fixation systems using a fracture model in buffalo metacarpal bone. World Journal of Surgery and Surgical Research 4: 1331.

    Google Scholar 

  124. Singh, G.R., H.P. Aithal, Amarpal, P. Kinjavdekar, S.K. Maiti, M. Hoque, A.M. Pawde, and H.C. Joshi. 2007. Evaluation of two dynamic axial fixators for large ruminants. Veterinary Surgery 36: 88–97.

    Article  PubMed  Google Scholar 

  125. Singh, G.R., H.P. Aithal, R.K. Saxena, P. Kinjavdekar, Amarpal, M. Hoque, S.K. Maiti, A.M. Pawde, and H.C. Joshi. 2007. In-vitro biomechanical properties of linear, circular and hybrid external skeletal fixation devices developed for use in large ruminants. Veterinary Surgery 36: 80–87.

    Article  PubMed  Google Scholar 

  126. Nash, R.A., D.M. Nunamaker, and R. Boston. 2001. Evaluation of a tapered-sleeve transcortical pin to reduce stress at the bone-pin interface in metacarpal bones obtained from horses. American Journal of Veterinary Research 62: 955–960.

    Article  CAS  PubMed  Google Scholar 

  127. Nunamaker, D.M., and R.A. Nash. 2008. A tapered sleeve transcortical pin external skeletal fixation device for use in horses: development, application, and experience. Veterinary Surgery 37: 725–732.

    Article  PubMed  Google Scholar 

  128. Nunamaker, D.M., D.W. Richardson, D.M. Butterweck, M.T. Provost, and R. Sigafoos. 1986. A new external skeletal fixation device that allows immediate full weight bearing: application in the horse. Veterinary Surgery 15: 345–355.

    Article  Google Scholar 

  129. Aithal, H.P., G.R. Singh, M. Hoque, S.K. Maiti, P. Kinjavdekar, Amarpal, A.M. Pawde, and H.C. Setia. 2004. The use of circular external skeletal fixation device for the management of long bone osteotomies in large ruminants: an experimental study. Journal of Veterinary Medicine A51: 284–293.

    Article  Google Scholar 

  130. Farese, J.P., D.D. Lewis, A.R. Cross, K.E. Collins, G.M. Anderson, and K.B. Halling. 2002. Use of IMEX SK-circular external fixator hybrid constructs for fracture stabilization in dogs and cats. Journal of the American Animal Hospital Association 38: 279–289.

    Article  PubMed  Google Scholar 

  131. Rao, J.R., V.G. Kumar, T.M. Rao, D.P. Kumar, K.C.S. Reddy, and K.B.P. Raghavender. 2016. Use of hybrid external fixation technique in the repair of long bone fractures in dogs. International Journal of Current Microbiology and Applied Sciences 5 (11): 579–586.

    Article  Google Scholar 

  132. Aithal, H.P., G.R. Singh, P. Kinjavdekar, Amarpal, M. Hoque, S.K. Maiti, A.M. Pawed, and H.C. Setia. 2007. Hybrid construct of linear and circular external skeletal fixation devices for fixation of long bone osteotomies in large ruminants. The Indian Journal of Animal Sciences 77: 1083–1090.

    Google Scholar 

  133. Shah, M.A., Rohit Kumar, P. Kinjavdekar, Amarpal, H.P. Aithal, Mohammad Arif Basha, and Asif Majid. 2022. The use of circular and hybrid external skeletal fixation systems to repair open tibial fractures in large ruminants: a report of six clinical cases. Veterinary Research Communications 46: 563–575.

    Article  PubMed  Google Scholar 

  134. Marcellin-Little, D.J., A. Ferretti, S.C. Roe, and D.J. Deyoung. 1998. Hinged Ilizarov external fixation for correction of antebrachial deformities. Veterinary Surgery 27: 231–245.

    Article  CAS  PubMed  Google Scholar 

  135. Aithal, H.P., Amarpal, P. Kinjavdekar, A.M. Pawde, G.R. Singh, and H.C. Setia. 2010. Management of tibial fractures using a circular external fixator in two calves. Veterinary Surgery 39: 621–626.

    Article  PubMed  Google Scholar 

  136. Bilgili, H., B. Kurum, and O. Captug. 2008. Use of a circular external skeletal fixator to treat comminuted metacarpal and tibial fractures in six calves. The Veterinary Record 163: 683–687.

    Article  CAS  PubMed  Google Scholar 

  137. Gulaydin, A., and M. Sarierler. 2018. Treatment of long bone fractures in calves with Ilizarov external fixator. Veterinary and Comparative Orthopaedics and Traumatology 31 (5): 364–372.

    Article  PubMed  Google Scholar 

  138. Olcay, B., H. Bilgili, and B. Kürüm. 1999. Treatment of communitive diaphyseal metacarpal fracture in a calf using the Ilizarov circular external fixation system. Israel Journal of Veterinary Medicine 54: 122–127.

    Google Scholar 

  139. Aithal, H.P., Amarpal, P. Kinjavdekar, A.M. Pawde, G.R. Singh, M. Hoque, S.K. Maiti, and H.C. Setia. 2007. Management of fractures near carpal joint of two calves by transarticular fixation with a circular external fixator. The Veterinary Record 161: 193–198.

    Article  CAS  PubMed  Google Scholar 

  140. Roe, S.C., and T. Keo. 1997. Epoxy putty for free-form external skeletal fixators. Veterinary Surgery 26 (6): 472–477.

    Article  CAS  PubMed  Google Scholar 

  141. Tyagi, S.K., H.P. Aithal, P. Kinjavdekar, Amarpal, A.M. Pawde, and J. Singh. 2014. Comparative biomechanical evaluation of acrylic- and epoxy- pin external skeletal fixation systems with two- and three- point fixation per segment under compressive loading. Advances in Animal and Veterinary Sciences 2: 212–217.

    Article  Google Scholar 

  142. Tyagi, S.K., H.P. Aithal, P. Kinjavdekar, Amarpal, A.M. Pawde, and I.P. Sarode. 2014. Physical characters and economics of acrylic and epoxy polymers as frame components of external skeletal fixator. The Indian Journal of Animal Sciences 84: 1261–1264.

    Article  Google Scholar 

  143. Tyagi, S.K., H.P. Aithal, P. Kinjavdekar, Amarpal, A.M. Pawde, T. Srivastava, K.P. Tyagi, and S.W. Monsang. 2014. Comparative evaluation of in vitro mechanical properties of different designs of epoxy-pin external skeletal fixation systems. Veterinary Surgery 43: 355–360.

    Article  PubMed  Google Scholar 

  144. Tyagi, S.K., H.P. Aithal, P. Kinjavdekar, Amarpal, A.M. Pawde, T. Srivastava, J. Singh, and D.N. Madhu. 2015. In vitro biomechanical testing of different configurations of acrylic external skeletal fixator constructs. Veterinary and Comparative Orthopaedics and Traumatology 28: 227–233.

    Article  CAS  PubMed  Google Scholar 

  145. Willer, R.L., E.L. Egger, and M.B. Histand. 1991. Comparison of stainless steel versus acrylic for the connecting bar of external fixators. Journal of the American Animal Hospital Association 27: 541–548.

    Google Scholar 

  146. Aithal, H.P., P. Kinjavdekar, Amarpal, A.M. Pawde, Rohit Kumar, Rekha Pathak, P. Kumar, S.K. Tyagi, P. Dubey, and D.N. Madhu. 2019. Treatment of open bone fractures using epoxy-pin fixation in small ruminants: a review of 26 cases. Rum Science 8: 103–114.

    Google Scholar 

  147. Aithal, H.P., P. Kinjavdekar, Amarpal, A.M. Pawde, M.M.S. Zama, Prasoon Dubey, Rohit Kumar, S.K. Tyagi, and D.N. Madhu. 2019. Epoxy-pin external skeletal fixation for management of open bone fractures in calves and foals: a review of 32 cases. Veterinary and Comparative Orthopaedics and Traumatology 32: 257–268.

    Article  PubMed  Google Scholar 

  148. Bennet, R.A., and A.B. Kuzma. 1992. Fracture management in birds. Journal of Zoo and Wildlife Medicine 22: 5–38.

    Google Scholar 

  149. Kumar, P., H.P. Aithal, P. Kinjavdekar, Amarpal, A.M. Pawde, K. Pratap, Surbhi, and D.K. Sinha. 2012. Epoxy-pin external skeletal fixation for treatment of open fractures or dislocations in 36 dogs. Indian Journal of Veterinary Surgery 33: 128–132.

    Google Scholar 

  150. Tyagi, S.K., H.P. Aithal, P. Kinjavdekar, Amarpal, A.M. Pawde, and Abhishek Kumar Saxena. 2021. Acrylic and epoxy-pin external skeletal fixation systems for fracture management in dogs. Indian Journal of Animal Research. https://doi.org/10.18805/IJAR.B-4265.

Download references

Author information

Authors and Affiliations

Authors

Chapter 2: Sample Questions

Chapter 2: Sample Questions

Q. No. 1: Mark the most appropriate answer.

  1. 1.

    Intramedullary pinning is most resistant against

    (a) bending, (b) rotation, (c) tension, (d) torsion

  2. 2.

    Bone plating should be done at the following surface of a long bone.

    (a) compression side (b) tension side (c) lateral side (d) medial side

  3. 3.

    Technique of fracture fixation wherein multiple percutaneous, transcortical pins are passed in the proximal and distal bone segment and are connected to a rigid external frame is known as

    (a) external fixation (b) internal fixation (c) external skeletal fixation (d) none of the above

  4. 4.

    Which of the following is not true with respect to an ESF?

    (a) strength increases as complexity of design increases (b) increasing the number of pins increases fixator strength (c) the larger the pin diameter, the greater is the fixation stability (d) the more the distance from the bone to side bars increases, the more the fixation stiffness

  5. 5.

    Avulsion fracture of the olecranon can be better treated by

    (a) screw fixation (b) IM pinning (c) tension band wiring (d) cross pinning

  6. 6.

    Transfixation pinning and casting are a type of

    (a) external fixation (b) internal fixation (c) external skeletal fixation (d) none of these

  7. 7.

    The technique of choice for the fixation of a supracondylar femoral fracture is

    (a) retrograde technique of single pinning, (b) stack pinning, (c) cross intramedullary pinning, (d) K-nailing

Q. No. 2: State true or false.

  1. 1.

    A plaster cast applied straight can neutralize bending and rotational forces but generally unable to resist compressive, shear, and tensile forces.

  2. 2.

    Creating an opening (window) in the cast will reduce its strength considerably and make the window site prone for breakage.

  3. 3.

    Modified Thomas splint is indicated in proximal femoral and humeral fractures.

  4. 4.

    IM nailing in a long bone fracture is contraindicated if periosteal system is already damaged.

  5. 5.

    In fractures with smaller bone segment, retrograde pinning is preferred due to accurate placement and better purchase of pin.

  6. 6.

    K-nails are not indicated if there are longitudinal cortical cracks in the fractured bone.

  7. 7.

    Plaster cast can be used for effective immobilization of fractures at the distal end of the femur.

  8. 8.

    Close pinning can only be used for recent stable fractures.

  9. 9.

    Internal fixation should be avoided in the presence of infection.

  10. 10.

    Periosteal stripping is preferred during plate fixation.

  11. 11.

    Cross IM pinning using small diameter pins can provide stable fixation of small fracture segments near the joint with minimal damage to the growth plate.

  12. 12.

    Interlocking nail is biomechanically superior to bone plate.

  13. 13.

    Limited contact DCPs with undercut can reduce the contact between the plate and the bone surface and in turn reduce the stress protection and vascular compromise.

  14. 14.

    Fully threaded cortical screw can be used as ‘lag screw’ by over-drilling the far cortex to achieve interfragmentary compression.

  15. 15.

    Positive-profile threaded pins are stronger than negative-profile threaded pins of similar size.

  16. 16.

    During ESF application, pins are introduced using high-speed, low torque power drills to avoid wobbling and reduce thermal necrosis of the bone.

  17. 17.

    A properly tensioned 1.6 mm K-wire provides stiffness equivalent to a 4 mm fixator pin.

Q. No. 3: Fill in the blanks.

  1. 1.

    ________________________ sling is used to hold the shoulder joint in flexion, while ________________________ sling is indicated to hold the hip joint in flexed position.

  2. 2.

    Introduction of the pin for IM pinning through one end of the bone is called as _________________________ technique, and when it is introduced through the fracture site, it is termed as ________________________ technique.

  3. 3.

    The diameter of the intramedullary pin should be about ______________________ of medullary cavity diameter, to achieve adequate stability.

  4. 4.

    Interlocking nailing with fixation of either proximal or distal transfixation bolts is called as _____________________________, whereas fixation of both proximal and distal bolts is termed as ______________________________.

  5. 5.

    ____________________________________ plates with threaded screw holes typically have combi holes to allow placement of either __________________________ or ____________________________ screws.

  6. 6.

    Minimally invasive plate osteosynthesis is _______________ (less/more) traumatic, ___________________ (less/more) biological, and __________ (less/more) rigid than standard plate fixation.

  7. 7.

    An orthopedic wire placed around the circumference of the bone is called as _________________________________, and a wire passed through a hole drilled in the bone to partially encircle the bone is ______________________________.

  8. 8.

    The methods used to reduce thermal necrosis of tissues during ESF application include __________________________, _______________________________, and ____________________________________.

  9. 9.

    Free-form fixation has the advantage of ________________________________________________________, but the disadvantage is _________________________________________.

Q. No. 4: Write short note on the following.

  1. 1.

    Principles of locking compression plate

  2. 2.

    Advantages of interlocking nailing

  3. 3.

    Minimally invasive plate osteosynthesis

  4. 4.

    Principles of external skeletal fixation

  5. 5.

    Plaster cast vs. fiberglass cast

  6. 6.

    Rush pinning vs. cross IM pinning

  7. 7.

    Dynamic self-compression plate vs. locking plate

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aithal, H.P., Pal, A., Kinjavdekar, P., Pawde, A.M. (2023). Principles of Fracture Fixation Techniques. In: Textbook of Veterinary Orthopaedic Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-99-2575-9_2

Download citation

Publish with us

Policies and ethics