Skip to main content

Diphtheria: A Paradigmatic Vaccine-Preventable Toxigenic Disease with Changing Epidemiology

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research

Abstract

Diphtheria is a paradigmatic example of a toxigenic infectious disease. It was Klebs who first identified Corynebacterium diphtheriae as the causative agent for diphtheria in 1883. It is an acute respiratory infection characterized by pseudo-membrane formation in the throat but can also cause cutaneous infections. Systemic effects are a result of the production of diphtheria toxin, which is an exotoxin that inhibits protein synthesis and leads to cell death. The toxin can commonly cause myocarditis and neuropathy, which are associated with increased mortality. Clinical diagnosis is of utmost importance and timely diagnosis and management are lifesaving. An attempt to confirm the diagnosis by isolating and identifying Corynebacterium diphtheriae by microbiological culture should be made. Enzymatic and toxin detection tests should confirm the isolate. Treatment consists of the administration of diphtheria antitoxin and antimicrobial therapy. Mainly a vaccine-preventable childhood disease, this disease has re-emerged in countries where the recommended vaccination programs are not sustained, and not only children but also adults are becoming prey to the disease. In the South East Asia region, thousands of diphtheria cases are reported annually. Globally, small pockets of outbreaks still occur in developed countries. There has been a change in the epidemiological trend of diphtheria around the world. In order to prevent the spread of such toxigenic strains in communities, clinical and epidemiological investigations are necessary along with strict public health measures. Recent outbreaks have highlighted the importance of vaccination in reducing the incidence in children and its re-emergence in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson W, Hamborsky J, McIntyre L (2007) Epidemiology and prevention of vaccine-preventable disease, vol 10. Public Health Foundation, Washington, DC, pp 59–70

    Google Scholar 

  • Behring EV (2013) Ueber das zustandekommen der diphtherie-immunität und der tetanus-immunität bei thieren. Drucke 16:1113–1114

    Google Scholar 

  • Bretonneau P (1826) Des inflammations spéciales du tissu muqueux, et en particular de la diphthérite, on inflammation pelliculaire. Chez Crevot, excerpt in Major. Classic Descriptions, Paris, pp 159–161

    Google Scholar 

  • CBHI (2005) Onwards. http://www.cbhidghs.nic.in/index1.asp?linkid=267. Accessed 15 Apr 2017

  • Chitkara AJ, Parikh R, Mihalyi A et al (2019) Hexavalent vaccines in India: current status. Indian Pediatr 56:939–950

    Article  PubMed  Google Scholar 

  • Clarke KE, MacNeil A, Hadler S et al (2019) Global epidemiology of diphtheria, 2000–2017. Emerg Infect Dis 25:1834–1842

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabbagh A, Eggers R, Cochi S et al (2007) A new global framework for immunization monitoring and surveillance. Bull WHO 85:904–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das PP, Patgiri SJ, Saikia L (2016) Recent outbreaks of diphtheria in Dibrugarh district, Assam, India. J Clin Diagn Res 10:1–3

    CAS  Google Scholar 

  • Grasse M, Meryk A, Miggitsch C et al (2018) GM-CSF improves the immune response to the diphtheria-component in a multivalent vaccine. Vaccine 36:4672–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield L, Bjorn MJ, Horn G (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci U S A 80:6853–6857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebs E (1940) Ueber Diphtherie. Bull Hist Med 8:509

    Google Scholar 

  • Kulkarni PS, Raut SK, Dhorje SP (2011) Diphtheria, tetanus, and pertussis immunity in Indian adults and immunogenicity of Td vaccine. Int Sch Res Notices 28:1–4

    Google Scholar 

  • Lalwani SK, Agarkhedkar S, Sundaram B (2017) Immunogenicity and safety of 3-dose primary vaccination with combined DTPa-HBV-IPV/Hib in Indian infants. Hum Vaccin 13:120–127

    Article  Google Scholar 

  • Loeffler F (1884) Utersuchung uber die Bedeutung der Mikroorganismen fir die Entstehung der Diptherie beim Menschen, bei der taube und beim Kalbe. Mitth Adkaiserl 2:421–499

    Google Scholar 

  • Loganathan T, Bin Yusof MP (2018) Adult diphtheria in Malaysia: a case report. Med J Malaysia 73:340–341

    CAS  PubMed  Google Scholar 

  • Lurie P (2004) Fatal respiratory diphtheria in a U.S. traveler to Haiti Pennsylvania. JAMA 291:937–938

    Article  CAS  Google Scholar 

  • Madhi SA, Mitha I, Cutland C et al (2011) Immunogenicity and safety of an investigational fully liquid hexavalent combination vaccine versus licensed combination vaccines at 6, 10, and 14 weeks of age in healthy South African infants. Pediatr Infect Dis J 30:68–74

    Article  Google Scholar 

  • Michel JP, Lang PO (2011) Promoting life course vaccination. Rejuvenation Res 14:75–81

    Article  PubMed  Google Scholar 

  • Mohanty L, Sharma S, Behera B (2018) A randomized, open label trial to evaluate and compare the immunogenicity and safety of a novel liquid hexavalent DTwP-Hib/Hep B-IPV (EasySixâ„¢) to licensed combination vaccines in healthy infants. Vaccine 36:2378–2384

    Article  CAS  PubMed  Google Scholar 

  • Murhekar M, Bitragunta S (2011) Persistence of diphtheria in India. Indian J Community Med 36:164–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Bishai WR, Murphy JR (2019) Corynebacterium diphtheriae: diphtheria toxin, the tox Operon, and its regulation by Fe2+ activation of apo-DtxR. Microbiol Spectr 7:7–4

    Article  Google Scholar 

  • Rahman M, Islam K (2019) Massive diphtheria outbreak among Rohingya refugees: lessons learnt. J Travel Med 26:1–3

    Article  Google Scholar 

  • Sangal L, Joshi S, Anandan S, Balaji V et al (2017) Resurgence of diphtheria in North Kerala, India, 2016: laboratory supported case-based surveillance outcomes. Front Public Health 5:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevigny LM, Booth BJ, Rowley KJ (2013) Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication. Infect Immun 81:3992–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Harit AK, Jain DC et al (1999) Diphtheria is declining but continues to kill many children: analysis of data from a sentinel centre in Delhi, 1997. Epidemiol Infect 123:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal L, Kour I, Gupta V et al (2021) Diphtheria in an adult: a paradigm of waning immunity. J Clin Diagn Res 15:1–3

    Google Scholar 

  • Skibinski DA, Baudner BC, Singh M et al (2011) Combination vaccines. J Glob Infect 3:63–72

    Article  Google Scholar 

  • Smith T (1909) Active immunity produced by so called balanced or neutral mixtures of diphtheria toxin and antitoxin. J Exp Med 11:241–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarna S, Sivagurunathan S, Bharathi S (2020) Diphtheria in an adult - a case report. Ind J Case Rep 6:160–162

    Google Scholar 

  • Tao X, Schiering N, Zeng HY et al (1994) Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol 14:191–197

    Article  CAS  PubMed  Google Scholar 

  • Truelove SA, Keegan LT, Moss WJ (2020) Clinical and epidemiological aspects of diphtheria: a systematic review and pooled analysis. Clin Infect Dis 71:89–97

    Article  PubMed  Google Scholar 

  • Vitek CR, Wharton M (1998) Diphtheria in the former Soviet Union: reemergence of a pandemic disease. Emerg Infect Dis 4:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2016) Immunization, vaccines and biologicals. reported cases of selected vaccine preventable diseases (VPDs). http://www.who.int/immunization/monitoring_surveillance/data/en/

  • World Health Organization (2016) Summary of WHO position papers: recommendations for routine immunization, Geneva. http://www.who.int/immunization/documents/positionpapers/en/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kour, I., Singhal, L., Gupta, V. (2023). Diphtheria: A Paradigmatic Vaccine-Preventable Toxigenic Disease with Changing Epidemiology. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_30

Download citation

Publish with us

Policies and ethics