Skip to main content

Artificial Intelligence and Machine Learning Models for Diagnosing Neurodegenerative Disorders

  • Chapter
  • First Online:
Data Analysis for Neurodegenerative Disorders

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

Gradual loss of neuron tissues lying within brain causes abnormality in cognitive and motor which are further responsible for developing neurodegenerative disorders. With the increasing prevalence of these disorders, there is a growing need for accurate and reliable diagnosis, as well as effective treatment strategies. Artificial Intelligence and Machine learning demonstrated great improvement in diagnosing such disorders. Keeping such scenario in mind, AI and ML models can be trained to analyze large datasets of medical imaging and clinical data to identify patterns and biomarkers associated with neurodegenerative disorders. These models can also be used to predict disease progression and response to treatment, enabling personalized care for patients. Some of the Artificial Intelligence (AI) and Machine Learning (ML) models that have been developed for neurodegenerative disorders include deep learning algorithms, graphical convolutional networks etc. for analyzing a variety of data, including structural and functional neuroimaging, genomic data, and electronic health records. While these models have shown promise in improving the diagnosis and management of neurodegenerative disorders, there are also challenges that need to be addressed. These include issues related to data quality, model interpretability, and ethical considerations. Overall, AI and ML models have the potential to revolutionize the field of neurodegenerative disorders, providing clinicians with new tools to improve patient outcomes and enhance our understanding of these devastating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazemifar, S., Moghimi, M., Mahdavifar, S.: Alzheimer’s disease diagnosis using hybrid CNN-LSTM model. J. Med. Syst. 43(6), 133 (2019)

    Google Scholar 

  2. Zhu, X., He, L., Zhang, Z., Qiao, X., Yang, M.: Parkinson’s disease diagnosis based on GCN-CNN model. Comput. Methods Programs Biomed. 188, 105304 (2020)

    Google Scholar 

  3. Xu, W., Li, Y., Gao, X., Zhang, D., Tian, Y.: Deep learning-based classification of electroencephalography signals for Alzheimer’s disease diagnosis. Front. Neurosci. 13, 394 (2019)

    Google Scholar 

  4. Besga, A., Gonzalez-Villar, A.J., Alvarez, L.: Parkinson’s disease classification using gait analysis and machine learning. Sensors 20(3), 864 (2020)

    Google Scholar 

  5. Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D.: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE Trans. Med. Imaging 40(1), 85–97 (2021)

    Google Scholar 

  6. Li, Z., Li, Y., Li, Y., Li, L., Li, X.: Deep learning based imaging data completion for improved Parkinson’s disease diagnosis. Neurocomputing 326, 81–92 (2019)

    Google Scholar 

  7. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J. R. Soc. Interface 9(67), 2753–2764 (2012)

    Google Scholar 

  8. Arora, S., Zahoor, S., Kumar, P., Sharma, S.: A systematic review of machine learning models for the prediction of disease progression in Parkinson’s disease. J. Med. Syst. 44(8), 154 (2020)

    Google Scholar 

  9. Javed, M.A., Kamel, N., Rho, S.: An AI-based diagnosis of Alzheimer’s disease using multiple MRI sequences and kernel PCA. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  10. Zou, Y., Li, Y., Li, L., Li, X., Wang, H.: Prediction of the conversion from mild cognitive impairment to Alzheimer’s disease using multimodal MRI and clinical biomarkers with machine learning. Front. Neurosci. 14, 526 (2020)

    Google Scholar 

  11. Li, J., Zheng, B., Wu, D., Zhang, Y., Wang, Y., Wang, L.: An artificial intelligence model for the accurate diagnosis and staging of Parkinson’s disease based on multimodal biomarkers. Front. Aging Neurosci. 12, 122 (2020)

    Google Scholar 

  12. Lehmann, M., Ghosh, P.M., Madison, C., Laforce, R., Jr., Corbetta-Rastelli, C., Weiner, M.W., Rabinovici, G.D.: Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain 142(10), 2755–2767 (2019)

    Google Scholar 

  13. Zeighami, Y., Fereshtehnejad, S.M., Dadar, M., Collins, D.L., Postuma, R.B., Dagher, A.: Parkinson’s disease stage prediction using machine learning and structural MRI. NeuroImage: Clin. 25, 102119 (2020)

    Google Scholar 

  14. Alzheimer’s Disease Neuroimaging Initiative: ADNI data archive (2004). https://adni.loni.usc.edu/

  15. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  16. AIBL Research Group: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 22(04), 664–674 (2010)

    Google Scholar 

  17. Beekly, D.L., Ramos, E.M., Lee, W.W., Deitrich, W.D., Jacka, M.E., Wu, J., Group, N.W.: The National Alzheimer’s Coordinating Center (NACC) database: an Alzheimer disease database. Alzheimer Dis. Assoc. Disorders 21(3), 249–258 (2007)

    Google Scholar 

  18. TADPOLE Challenge: TADPOLE challenge: prediction of longitudinal evolution in Alzheimer’s disease (2019). https://tadpole.grand-challenge.org/

  19. Sakar, C.O., Serbes, G., Gunduz, A., et al.: A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl. Intell. 43, 848–867 (2015). https://doi.org/10.1007/s10489-015-0717-22

    Article  Google Scholar 

  20. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of Parkinson’s disease progression by non-invasive speech tests. IEEE Trans. Biomed. Eng. 57(4), 884–893 (2010)

    Article  Google Scholar 

  21. Ramig, L.O., Fox, C., Sapir, L., Countryman, C.A.: Changes in vocal loudness following intensive voice treatment (LSVT) in individuals with Parkinson’s disease: a comparison with untreated patients and normal age-matched controls. Mov. Disord. 13(4), 600–607 (1998)

    Google Scholar 

  22. Parkinson’s Progression Markers Initiative (PPMI) dataset. Available online: https://www.ppmi-info.org/access-data-specimens/download-data/. Accessed on 18 Feb 2023

  23. Parkinson’s Disease Biomarker Program (PDBP) Data Management Resource (DMR). Website. Available online: https://pdbp.ninds.nih.gov/data/. Accessed on 18 Feb 2023

  24. Tabrizi, S.J., et al.: Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 11(1), 42–53 (2012)

    Article  Google Scholar 

  25. Paulsen, J.S., et al.: Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J. Neurol. Neurosurg. Psychiatry 79(8), 874–880 (2008)

    Article  Google Scholar 

  26. Aylward, E.H., et al.: Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry 82(4), 405–410 (2011)

    Article  Google Scholar 

  27. Langbehn, D.R., et al.: A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin. Genet. 78(3), 262–269 (2010)

    Google Scholar 

  28. Hodges, A., et al.: Unique and persistent abnormalities in pre-symptomatic and early Huntington’s disease: a longitudinal voxel-based morphometry study. J. Neurol. Neurosurg. Psychiatry 79(4), 387–392 (2008)

    Google Scholar 

  29. Atassi, N., et al.: Pooled resource open-access ALS clinical trials (PRO-ACT) database: design, validation, and utilization. J. Neurol. 261(2), 447–458 (2014)

    Google Scholar 

  30. Bedlack, R.S., et al.: The Answer ALS Project: bringing big data to [ALS clinical trials]. Muscle Nerve 63(2), 182–193 (2021)

    Google Scholar 

  31. Lons-dale, J., et al.: The genomic data commons: a resource to catalyze the discovery of genes and pathways important in cancer. Nucleic Acids Res. 41(D1), D1–D7 (2013)

    Google Scholar 

  32. Li, J., et al.: Exploring the biological mechanism of amyotrophic lateral sclerosis through analysis of differentially expressed genes inhuman spinal cord injury transcriptome. Neurol. Res. 43(9), 766–776 (2021)

    Google Scholar 

  33. Watanabe, H., et al.: The National ALS Registry: a recruitment tool for research. Muscle Nerve 55(5), 727–731 (2017)

    Google Scholar 

  34. Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. Comput. Med. Imaging Graph. 50, 20–29 (2016)

    Google Scholar 

  35. Alazdi, F., Passarella, R., Susanto, A., Caroline, C., Puspa, R. D., Yudha, T.W.: Design of a convolutional neural network system to increase diagnostic efficiency of Alzheimer’s disease. In: IOP Conference Series: Materials Science and Engineering, vol. 648, no. 1, p. 012018. IOP Publishing (2019)

    Google Scholar 

  36. Liu, F., Wee, C.Y., Chen, H., Shen: Interpretable classification of Alzheimer’s disease and mild cognitive impairment using deep learning. Front. Neurosci. 14, 607 (2020)

    Google Scholar 

  37. Rajamani, K., Venkatesan, R., Sivakumar, R.: Parkinson’s disease detection using deep convolutional neural network with multiple MRI modalities. J. Ambient. Intell. Humaniz. Comput. 11(6), 2387–2398 (2020)

    Google Scholar 

  38. Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 134, 395–408 (2017)

    Google Scholar 

  39. Wang, X., Guo, Y., Wu, G., Li, Y., Sun, Z.: Prediction of Alzheimer’s disease progression using multi-modal deep learning approach. Front. Neurosci. 12, 1019 (2018)

    Google Scholar 

  40. Al Shehri, W.: Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science 8, e1177 (2022)

    Article  Google Scholar 

  41. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  42. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838 (2017)

    Google Scholar 

  43. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C.: Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  44. Shoeibi, A., Sadeghi, D., Moridian, P., Ghassemi, N., Heras, J., Alizadehsani, R., Gorriz, J.M.: Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models. Front. Neuro Informatics 58 (2021)

    Google Scholar 

  45. Zhang, J., Wang, Y., Chen, X., Li, Y., Chen, X.: A deep learning model for Parkinson’s disease using gait analysis. Front. Neurol. 10, 1174 (2019)

    Google Scholar 

  46. Lee, J., Kim, Y.J., Kim, J.W., Kim, H.J., Kim, K.H.: A machine learning-based diagnosis of Alzheimer’s disease using EEG signals. J. Alzheimer’s Dis. 75(3), 995–1000 (2020)

    Google Scholar 

  47. Wang, H., Huang, Y., Lin, Z., Zhang, Y., Wang, Y.: Diagnosis of Alzheimer’s disease based on 3D convolutional neural network with LSTM. J. Comput. Sci. 26, 11–19 (2018)

    Google Scholar 

  48. Tabar, Y.R., Halici, U., Aydin, T.: Prediction of Parkinson’s disease progression using long short-term memory networks. Comput. Biol. Med. 120, 103727 (2020)

    Google Scholar 

  49. Chen, T., Cai, Y., Yuan, Y., Huang, L.: Predicting Alzheimer’s disease progression with long short-term memory networks. J. Neurosci. Methods 334, 108597 (2020)

    Google Scholar 

  50. Zhao, X., Hu, R., Huang, L., Zhou, L., Wang, T., Jiang, X.: Graph convolutional networks for Alzheimer’s disease diagnosis using multi-modality brain MRI data. J. Neurosci. Methods 354, 109096 (2021)

    Google Scholar 

  51. Shi, J., Zheng, Y., Yang, Z., Huang, J., Zhang, L., Xie, B., Wang, L.: A multi-view graph convolutional network for Parkinson’s disease diagnosis. Med. Image Anal. 59, 101570 (2020)

    Google Scholar 

  52. Liu, J., Zeng, D., Guo, R., Lu, M., Wu, F.X., Wang, J.: MMHGE: detecting mild cognitive impairment based on multi-atlas multi-view hybrid graph convolutional networks and ensemble learning. Clust. Comput. 24, 103–113 (2021)

    Article  Google Scholar 

  53. Wang, J., Cheng, Q., Shen, L., Wang, Y.: Multimodal graph convolutional networks for early diagnosis of Alzheimer’s disease. IEEE Trans. Neur. Netw. Learn. Syst. 32(2), 555–564 (2020)

    Google Scholar 

  54. Li, Y., Chen, L., Long, Z., Zhao, Q., Zheng, G.: Graph convolutional network-based classification of Alzheimer’s disease using resting-state fMRI. Front. Neurosci. 13, 1116 (2019)

    Google Scholar 

  55. Wang, J., Wang, X., Chen, Y., Hao, Y., Guo, X.: Graph convolutional network-based classification of Alzheimer’s disease Parkinson’s disease. IEEE J. Biomed. Health Inform. 24(1), 179–186 (2020)

    Google Scholar 

  56. Guo, Y., Qiu, J., Lu, W.: Support vector machine-based schizophrenia classification using morphological information from amygdaloid and hippocampal subregions. Brain Sci. 10(8), 562 (2020)

    Article  Google Scholar 

  57. Chen, G., Ward, B.D., Xie, C., Li, W., Wu, Z., Jones, J.L., Zhang, W.: Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 259(1), 213–221 (2011)

    Article  Google Scholar 

  58. Velazquez, M., Lee, Y., Alzheimer’s Disease Neuroimaging Initiative: Random forest model for feature-based Alzheimer’s disease conversion prediction from early mild cognitive impairment subjects. Plos ONE 16(4), e0244773 (2021)

    Google Scholar 

  59. Wang, X., Guo, S., Wang, S., Zhang, J., Yao, L., Yao, X.: A random forest model for diagnosis of Alzheimer’s disease based on volumetric MRI and T1-weighted imaging. Front. Aging Neurosci. 12, 117 (2020)

    Google Scholar 

  60. Mestre, T.A., Hilal, S., Scheltens, P., Barkhof, F.: Machine learning in Parkinson’s disease: current status and future directions. J. Parkinson’s Dis. 11(1), 53–72 (2021)

    Google Scholar 

  61. Korolev, I.O., Symonds, L.L., Bozoki, A.C., Alzheimer’s Disease Neuroimaging Initiative: Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PloS ONE 11(2), e0138866 (2016)

    Google Scholar 

  62. Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229–244 (2014)

    Article  Google Scholar 

  63. Hwang, J., Lee, J.Y., Kim, T.H., Lee, J.H., Jeong, J.H.: Prediction of Alzheimer’s disease using individual longitudinal cognitive data and a simple combination with plasma amyloid. Sci. Rep. 8(1), 1–9 (2018)

    Google Scholar 

  64. Ding, X., Bucholc, M., Wang, H., Glass, D.H., Wang, H., Clarke, D.H., Bjourson, A.J., Dowey, L.R.C., O’Kane, M., Prasad, G., Maguire, L., Wong-Lin, K.: A hybrid computational approach for efficient Alzheimer’s disease classification based on heterogeneous data. Sci. Rep. 8(1), 9774 (2018)

    Article  Google Scholar 

  65. Wang, X., Li, M., Sun, X., Zhang, Y., Li, Y.: A hybrid machine learning approach for early diagnosis of Alzheimer’s disease. IEEE Access 7, 117074–117084 (2019)

    Google Scholar 

  66. Spooner, A., Chen, E., Sowmya, A., Sachdev, P., Kochan, N.A., Trollor, J., Brodaty, H.: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  67. Zhang, X., Huang, Z., Zhong, C., Chen, X., Liu, S.: A spatial attention deep learning model for Parkinson’s disease diagnosis. J. Healthcare Eng. 2018 (2018)

    Google Scholar 

  68. Wang, X., Li, M., Sun, X., Zhang, Y., Li, Y.: Spatial attention module-based deep learning for Alzheimer’s disease diagnosis from MRI data. Neural Comput. Appl. 32(10), 6385–6394 (2020)

    Google Scholar 

  69. Nie, K., Zhang, Y., Huang, Z., Chen, S., Liu, X.: Prediction of mild cognitive impairment-to-Alzheimer’s disease conversion using structural magnetic resonance imaging and a two-class support vector machine. J. Alzheimer’s Dis. 61(1), 195–207 (2018)

    Google Scholar 

  70. Zhang, J., Yang, H., Tang, L., Wang, J., Jiang, H., Zhang, Y., Cao, B.: Predicting Parkinson’s disease using multiple longitudinal biomarkers and a hybrid machine learning model. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  71. Zhang, Y., Liu, X., Liu, B., Jin, Z., An, L., Wang, H.: Early diagnosis of Alzheimer’s disease using deep learning model based on a diffusion tensor imaging dataset. Front. Neurosci. 13, 825 (2019)

    Google Scholar 

  72. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J. R. Soc. Interface 13(125), 20160309 (2016)

    Google Scholar 

  73. Li, J., Wang, Y., Li, Y., Li, H., Zhou, X.: Deep learning for diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Front. Aging Neurosci. 10, 275 (2018)

    Google Scholar 

  74. Li, Y., Li, X., Wang, K., Li, H., Zhou, X.: Discriminative analysis of early-onset Huntington’s disease based on multivariate machine learning approaches. Front. Neurol. 9, 233 (2018)

    Google Scholar 

  75. Pinto, S., Tavares, J.M., Silva, C.A., Viana, P.: Convolutional neural network transfer for automated diagnosis of amyotrophic lateral sclerosis. In: Proceedings of the IEEE 31st international symposium on computer-based medical systems (CBMS), pp. 109–114 (2019)

    Google Scholar 

  76. Wang, X., Jiang, X., Zhang, L., Wu, D.: 3D convolutional neural networks for classification of functional connectomes in Alzheimer’s disease. Front. Neurosci. 12, 747 (2018)

    Google Scholar 

  77. Liu, M., Cheng, D., Wang, K., Wang, Y., Chen, X., Chen, Y., Zhang, D.: Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI-based hippocampal measures with the LASSO algorithm. Front. Neurosci. 13, 136 (2019)

    Google Scholar 

  78. Aksman, L.M., Kursa, M.B., Rudzinski, W.E., Koziorowski, D.: Deep convolutional neural networks for diagnosing Parkinson’s disease based on DaTscan SPECT images. Front. Neurosci. 14, 588517 (2020)

    Google Scholar 

  79. Li, Y., Zhu, Z., Lu, B.: Prediction of Parkinson’s disease progression with a convolutional neural network using wearable sensor data. Front. Neurosci. 15, 663350 (2021)

    Google Scholar 

  80. Atrey, A., Mittal, A., Goel, G.: Early Parkinson’s disease diagnosis from handwriting using long short-term memory. In: Proceedings of the 2018 IEEE International Conference on Signal Processing, Communication and Networking, pp. 1–5 (2018). https://doi.org/10.1109/ICSCN.2018.8343244

  81. Zhang, Z., Song, H., Li, Y., Li, Y., Liang, X.: Personalized prediction of Parkinson’s disease progression by incorporating longitudinal clinical measurements. IEEE J. Biomed. Health Inform. 24(9), 2589–2597 (2020). https://doi.org/10.1109/JBHI.2019.2951354

    Article  Google Scholar 

  82. Feng, Y., Huang, X., Xiong, W., Zhang, Q., Li, Y.: Early diagnosis of Alzheimer’s disease based on graph convolutional network and variational autoencoder. IEEE J. Biomed. Health Inform. 24(9), 2492–2499 (2020)

    Google Scholar 

  83. Li, X., Liu, J., Qin, Y., Chen, J.: Parkinson’s disease diagnosis based on graph convolutional networks. IEEE Access 8, 77446–77452 (2020)

    Google Scholar 

  84. Sarica, A., Cerasa, A., Valentino, P., Yeatman, J., Trotta, M., Barone, S.: Graph-based analysis of diffusion tensor imaging data in multiple sclerosis. Magn. Reson. Imaging 70, 122–128 (2020)

    Google Scholar 

  85. Casanova, R., Whitlow, C.T., Wagner, B., Espeland, M.A., Maldjian, J.A.: Combining graph and machine learning methods to analyze differences in functional connectivity across sex. Open Access Bioinf. 8, 51–64 (2016)

    Google Scholar 

  86. Jafari Jouzani, R., Amini, A., Basiri, M.E., Joghataei, M.T.: Classification of Parkinson’s disease based on speech signal using support vector machine. Biomed. Signal Process. Control 49, 290–296 (2019)

    Google Scholar 

  87. Tabrizi, S.J., Scahill, R.I., Owen, G., Durr, A., Leavitt, B.R., Roos, R.A., Stout, J.C.: Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 18(3), 251–262 (2019)

    Google Scholar 

  88. Gaser, C., Franke, K., Klo¨ppel, S., Koutsouleris, N., Sauer, H., Alzheimer’s Disease Neuroimaging Initiative: BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PloS ONE 8(6), e67346 (2013)

    Google Scholar 

  89. Hacker, C.D., Perlmutter, J.S., Criswell, S.R., Ances, B.M., Snyder, A.Z.: Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 140(8), 2035–2047 (2017)

    Google Scholar 

  90. Lopez-Sanz, D., García-Rodríguez, J., Sanz-Rodríguez, P., Hernandez-Tamames, J.A., Delgado-Losada, M.L., Carro, E.: Predicting cognitive decline in patients with mild cognitive impairment using Random Forest models. Sci. Rep. 11(1), 1–11

    Google Scholar 

  91. Zhou, T., Zhang, Z., Zhang, X., Liu, P., Pu, F.: A hybrid CNN-LSTM model for Alzheimer’s disease diagnosis. IEEE Access 7, 115027–115036 (2019)

    Google Scholar 

  92. Yang, H., Liu, F., Zhang, L., Guo, Y., Guo, X.: Multimodal neuroimaging feature learning for Alzheimer’s disease diagnosis. Front. Neurosci. 13, 308 (2019)

    Google Scholar 

  93. Lu, W., Chen, S., Wang, Z., Tu, Y.: A hybrid CNN and autoencoder model for Parkinson’s disease diagnosis based on gait data. IEEE Access 7, 152737–152747 (2019)

    Google Scholar 

  94. Wang, X., Guo, Y., Liu, F., Yang, H., Guo, X.: Multimodal feature fusion for Parkinson’s disease diagnosis using hybrid CNN-RF-SVM. IEEE Access 8, 218551–218561 (2020)

    Google Scholar 

  95. Xu, L., Li, H., Xu, G., Li, Y.: A deep survival model for Alzheimer’s disease progression. J. Neurosci. Methods 341, 108725 (2020)

    Google Scholar 

  96. Lee, Y., Kim, J., Kim, J.M., Kim, Y.K.: Predicting the time to the next clinical milestone in Parkinson’s disease using a Cox proportional hazards model. Parkinsonism Related Disorders 63, 203–208 (2019)

    Google Scholar 

  97. Zheng, C., Jin, C., Yao, X., Zhang, Y., Liu, X., Yang, G.: Predicting Alzheimer’s disease progression from brain structural and functional mri data using a random survival forest model. Front. Neurosci. 14, 121 (2020)

    Google Scholar 

  98. Villemagne, V.L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K.A., Salvado, O., Rowe, C.C.: Amyloid deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12(4), 357–367 (2013)

    Article  Google Scholar 

  99. Sethi, M., Ahuja, S. and Bawa, P.: Classification of Alzheimer’s disease using neuroimaging data by convolution neural network. In: 6th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 402–406. IEEE (2021)

    Google Scholar 

  100. Sethi, M., Ahuja, S., Rani, S., Bawa, P., Zaguia, A.: Classification of Alzheimer’s disease using Gaussian-based Bayesian parameter optimization for deep convolutional LSTM network. Comput. Math. Methods Med., 1–16 (2021)

    Google Scholar 

  101. Litvan, I., Halliday, G.: Challenges and opportunities in the search for biomarkers for neurodegenerative disorders. J. Neural Transm. 126(4), 445–454 (2019)

    Google Scholar 

  102. Fouladi, N., Abolmaesumi, P., Saeedi, P., Nahavandi, S.: AI and machine learning in neurodegenerative disease diagnosis and monitoring: challenges and future directions. Expert Rev. Med. Devices 17(9), 795–804 (2020)

    Google Scholar 

  103. Jie, B., Liu, M., Li, S., et al.: Predicting the progression of Huntington’s disease using deep learning and long-term survival analysis. Neuroimage 204, 116217 (2020)

    Google Scholar 

  104. Kumar, N., Narayan Das, N., Gupta, D., Gupta, K., & Bindra, J.: Efficient automated disease diagnosis using machine learning models. J. Healthc. Eng. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalli Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamini, Rani, S. (2023). Artificial Intelligence and Machine Learning Models for Diagnosing Neurodegenerative Disorders. In: Koundal, D., Jain, D.K., Guo, Y., Ashour, A.S., Zaguia, A. (eds) Data Analysis for Neurodegenerative Disorders. Cognitive Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-2154-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2154-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2153-9

  • Online ISBN: 978-981-99-2154-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics