Skip to main content

Molecular Dynamics Simulation Methods to Study Structural Dynamics of Proteins

  • Chapter
  • First Online:
Protein Folding Dynamics and Stability
  • 720 Accesses

Abstract

Molecular dynamics (MD) simulation is a computational technique for understanding the physical motions of atomic and molecular particles. In this approach, atoms and molecules interact for a defined time period, revealing information on the dynamic evolution of the system. Newton’s equations of motion are used to determine the trajectories of atoms and molecules. The forces and potential energy between atoms and molecules are calculated using molecular mechanics force fields or interatomic potentials. The approach was originally created for applications in the field of theoretical physics; however, it is now used in other areas, including materials science, theoretical chemistry, computational biology, etc. This technique determines the time-dependent behaviour of a molecular system. MD simulation has been widely used to study the conformational changes of biomacromolecules to explore the structure and dynamics of proteins, nucleic acids, and their complexes. It has also been used to study the protein–ligand interactions, which are essential for various processes inside the cell, such as signal transduction, immune reaction, and gene regulation. The data help explore the regulatory mechanisms of various biological processes. MD studies also provide a theoretical background for drug design and discovery. Therefore, MD simulation has been extensively used by researchers in combination with biochemical and biophysical methods to obtain a dynamic understanding of biomolecular behaviour. This chapter discusses various MD simulation methods and how they are used to study the structural dynamics of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.M. Kelly, N.C. Price, The application of circular dichroism to studies of protein folding and unfolding. BBA-Protein Struct. M. 1338, 161–185 (1997)

    Article  CAS  Google Scholar 

  2. U. Mayor, C.M. Johnson, V. Daggett, A.R. Fersht, Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. 97, 13518–13522 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H.A. Scheraga, M. Khalili, A. Liwo, Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58, 57–83 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)

    Article  CAS  Google Scholar 

  5. B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959)

    Article  CAS  Google Scholar 

  6. A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405 (1964)

    Article  Google Scholar 

  7. A. Rahman, F.H. Stillinger, Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359 (1971)

    Article  CAS  Google Scholar 

  8. J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267, 585–590 (1977)

    Article  CAS  PubMed  Google Scholar 

  9. A. Khandelwal, V. Lukacova, D. Comez, D.M. Kroll, S. Raha, S. Balaz, A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem. 48, 5437–5447 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Billeter, G. Wagner, K. Wüthrich, Solution NMR structure determination of proteins revisited. J. Biomol. NMR 42, 155–158 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Park, J. Jung, G.J. Yun, Multiscale micromorphic theory compatible with MD simulations in both time-scale and length-scale. Int. J. Plast. 129, 102680 (2020)

    Article  Google Scholar 

  12. M.C. Zwier, L.T. Chong, Reaching biological timescales with all-atom molecular dynamics simulations. Curr. Opin. Pharmacol. 10, 745–752 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. J.L. Binder, J. Berendzen, A.O. Stevens, Y. He, J. Wang, N.V. Dokholyan, T.I. Oprea, AlphaFold illuminates half of the dark human proteins. Curr. Opin. Struct. Biol. 74, 102372 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. E. Callaway, “The entire protein universe”: aI predicts shape of nearly every known protein. Nature 608, 15–16 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. R.O. Dror, R.M. Dirks, J.P. Grossman, H. Xu, D.E. Shaw, Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41, 429–452 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. V. Rajendran, R. Shukla, H. Shukla, T. Tripathi, Structure-function studies of the asparaginyl-tRNA synthetase from Fasciola gigantica: understanding the role of catalytic and non-catalytic domains. Biochem. J. 475, 3377–3391 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. T. Pandey, R. Shukla, H. Shukla, A. Sonkar, T. Tripathi, A.K. Singh, A combined biochemical and computational studies of the rho-class glutathione s-transferase sll1545 of synechocystis PCC 6803. Int. J. Biol. Macromol. 94, 378–385 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. A. Sonkar, H. Shukla, R. Shukla, J. Kalita, T. Pandey, T. Tripathi, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) of acinetobacter baumannii (AbMurA): structural and functional properties. Int. J. Biol. Macromol. 97, 106–114 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. B. Brooks, M. Karplus, Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. 80, 6571–6575 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.T. Brünger, C.L. Brooks 3rd, M. Karplus, Active site dynamics of ribonuclease. Proc. Natl. Acad. Sci. 82, 8458–8462 (1985)

    Article  PubMed  PubMed Central  Google Scholar 

  21. J. Smith, S. Cusack, U. Pezzeca, B. Brooks, M. Karplus, Inelastic neutron scattering analysis of low frequency motion in proteins: a normal mode study of the bovine pancreatic trypsin inhibitor. J. Chem. Phys. 85, 3636–3654 (1986). https://doi.org/10.1063/1.450935

    Article  CAS  Google Scholar 

  22. C.C. David, D.J. Jacobs, Principal component analysis: a method for determining the essential dynamics of proteins, in Protein Dynamics, ed. by D. Livesay, (Springer, Heidelberg, 2014), pp. 193–226

    Chapter  Google Scholar 

  23. A. Wolf, K.N. Kirschner, Principal component and clustering analysis on molecular dynamics data of the ribosomal L11 23S subdomain. J. Mol. Model. 19, 539–549 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. F. Colonna-Cesari, D. Perahia, M. Karplus, H. Eklund, C.I. Brädén, O. Tapia, Interdomain motion in liver alcohol dehydrogenase. Structural and energetic analysis of the hinge bending mode. J. Biol. Chem. 261, 15273–15280 (1986)

    Article  CAS  PubMed  Google Scholar 

  25. L. Nilsson, G.M. Clore, A.M. Gronenborn, A.T. Brünger, M. Karplus, Structure refinement of oligonucleotides by molecular dynamics with nuclear overhauser effect interproton distance restraints: application to 5′ d (CGTACG) 2. J. Mol. Biol. 188, 455–475 (1986)

    Article  CAS  PubMed  Google Scholar 

  26. D.A. Case, M. Karplus, Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132, 343–368 (1979)

    Article  CAS  PubMed  Google Scholar 

  27. P. Banáš, P. Jurečka, N.G. Walter, J. Šponer, M. Otyepka, Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods 49, 202–216 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Ahmadi, L. Barrios Herrera, M. Chehelamirani, J. Hostaš, S. Jalife, D.R. Salahub, Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: a tutorial review. Int. J. Quantum Chem. 118, e25558 (2018)

    Article  Google Scholar 

  29. A.W. Götz, M.A. Clark, R.C. Walker, An extensible interface for QM/MM molecular dynamics simulations with AMBER. J. Comput. Chem. 35, 95–108 (2014)

    Article  PubMed  Google Scholar 

  30. R.C. Tolman, The Principles of Statistical Mechanics (Courier Corporation, New York, 1979)

    Google Scholar 

  31. R.H. Fowler, Statistical Mechanics (Cambridge University Press, Cambridge, 1967)

    Google Scholar 

  32. Y. Levin, R. Pakter, F.B. Rizzato, T.N. Teles, F.P. Benetti, Nonequilibrium statistical mechanics of systems with long-range interactions. Phys. Rep. 535, 1–60 (2014)

    Article  Google Scholar 

  33. M. Takano, K. Nagayama, A. Suyama, Investigating a link between all-atom model simulation and the Ising-based theory on the helix–coil transition: equilibrium statistical mechanics. J. Chem. Phys. 116, 2219–2228 (2002)

    Article  CAS  Google Scholar 

  34. M.J. Uline, D.W. Siderius, D.S. Corti, On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems. J. Chem. Phys. 128, 124301 (2008)

    Article  PubMed  Google Scholar 

  35. J.R. Ray, H. Zhang, Correct microcanonical ensemble in molecular dynamics. Phys. Rev. E 59, 4781 (1999)

    Article  CAS  Google Scholar 

  36. A. Johnson, T. Johnson, A. Khan, Thermostats in molecular dynamics simulations. UMass. 1, 29 (2012)

    Google Scholar 

  37. P.V. Coveney, S. Wan, On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys. 18, 30236–30240 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. R.D. Gregory, Classical Mechanics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  39. T. Kibble, F.H. Berkshire, Classical Mechanics (World Scientific Publishing Company, Singapore, 2004)

    Book  Google Scholar 

  40. H. Grubmüller, H. Heller, A. Windemuth, K. Schulten, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6, 121–142 (1991)

    Article  Google Scholar 

  41. Q. Spreiter, M. Walter, Classical molecular dynamics simulation with the velocity Verlet algorithm at strong external magnetic fields. J. Comput. Phys. 152, 102–119 (1999)

    Article  CAS  Google Scholar 

  42. W.F. Van Gunsteren, H.J. Berendsen, A leap-frog algorithm for stochastic dynamics. Mol. Simul. 1, 173–185 (1988)

    Article  Google Scholar 

  43. R.W. Pastor, B.R. Brooks, A. Szabo, An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys. 65, 1409–1419 (1988)

    Article  Google Scholar 

  44. J. Shimada, H. Kaneko, T. Takada, Efficient calculations of Coulombic interactions in biomolecular simulations with periodic boundary conditions. J. Comput. Chem. 14, 867–878 (1993)

    Article  CAS  Google Scholar 

  45. W. Tian, L. Qi, X. Chao, J. Liang, M. Fu, Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures. Compos. Part B 162, 1–10 (2019)

    Article  Google Scholar 

  46. A.Y. Toukmaji, J.A. Board Jr., Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996)

    Article  CAS  Google Scholar 

  47. J. Kolafa, J.W. Perram, Cutoff errors in the Ewald summation formulae for point charge systems. Mol. Simul. 9, 351–368 (1992)

    Article  CAS  Google Scholar 

  48. E.A. Koopman, C.P. Lowe, Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys. 124, 204103 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. E. Rosta, N.-V. Buchete, G. Hummer, Thermostat artifacts in replica exchange molecular dynamics simulations. J. Chem. Theory Comput. 5, 1393–1399 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R. Kutteh, R.B. Jones, Rigid body molecular dynamics with nonholonomic constraints: molecular thermostat algorithms. Phys. Rev. E 61, 3186–3198 (2000). https://doi.org/10.1103/PhysRevE.61.3186

    Article  CAS  Google Scholar 

  51. P. Ferrara, J. Apostolakis, A. Caflisch, Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46, 24–33 (2002). https://doi.org/10.1002/prot.10001

    Article  CAS  PubMed  Google Scholar 

  52. H. Nguyen, D.R. Roe, C. Simmerling, Improved generalized born solvent model parameters for protein simulations. J. Chem. Theory Comput. 9, 2020–2034 (2013). https://doi.org/10.1021/ct3010485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Malevanets, R. Kapral, Mesoscopic model for solvent dynamics. J. Chem. Phys. 110, 8605–8613 (1999). https://doi.org/10.1063/1.478857

    Article  CAS  Google Scholar 

  54. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  55. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013). https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005). https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. B.R. Brooks, C.L. Brooks, A.D. MacKerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program. J Comput Chem 30, 1545–1614 (2009). https://doi.org/10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M. Froimowitz, HyperChem: a software package for computational chemistry and molecular modeling. BioTechniques 14, 1010–1013 (1993)

    CAS  PubMed  Google Scholar 

  60. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38., 27–28 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  61. J. Hsin, A. Arkhipov, Y. Yin, J.E. Stone, K. Schulten, Using VMD: an introductory tutorial. Curr Protoc Bioinformatics Chapter 5, Unit 5.7 (2008). https://doi.org/10.1002/0471250953.bi0507s24

    Article  PubMed  Google Scholar 

  62. B. Knapp, N. Lederer, U. Omasits, W. Schreiner, vmdICE: a plug-in for rapid evaluation of molecular dynamics simulations using VMD. J Comput Chem 31, 2868–2873 (2010). https://doi.org/10.1002/jcc.21581

    Article  CAS  PubMed  Google Scholar 

  63. S. Falsafi-Zadeh, Z. Karimi, H. Galehdari, VMD DisRg: new user-friendly implement for calculation distance and radius of gyration in VMD program. Bioinformation 8, 341–343 (2012). https://doi.org/10.6026/97320630008341

    Article  PubMed  PubMed Central  Google Scholar 

  64. I.V. Likhachev, N.K. Balabaev, O.V. Galzitskaya, Available instruments for analyzing molecular dynamics trajectories. Open Biochem. J. 10, 1–11 (2016). https://doi.org/10.2174/1874091X01610010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D. Seeliger, B.L. de Groot, Ligand docking and binding site analysis with PyMOL and autodock/Vina. J. Comput. Aided Mol. Des. 24, 417–422 (2010). https://doi.org/10.1007/s10822-010-9352-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  67. D. Hollas, L. Šištík, E.G. Hohenstein, T.J. Martínez, P. Slavíček, Nonadiabatic Ab initio molecular dynamics with the floating occupation molecular orbital-complete active space configuration interaction method. J. Chem. Theory Comput. 14, 339–350 (2018). https://doi.org/10.1021/acs.jctc.7b00958

    Article  CAS  PubMed  Google Scholar 

  68. G.M. Torrie, J.P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977). https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  69. R. Brüschweiler, R.M.S.D. Efficient, Measures for the comparison of two molecular ensembles. Root-mean-square deviation. Proteins 50, 26–34 (2003). https://doi.org/10.1002/prot.10250

    Article  CAS  PubMed  Google Scholar 

  70. O. Carugo, How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. J. Appl. Cryst. 36, 125–128 (2003). https://doi.org/10.1107/S0021889802020502

    Article  CAS  Google Scholar 

  71. R.K. Pathak, M. Baunthiyal, R. Shukla, D. Pandey, G. Taj, A. Kumar, In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against alternaria blight disease in brassica species. Front. Plant Sci. 8, 609 (2017). https://doi.org/10.3389/fpls.2017.00609

    Article  PubMed  PubMed Central  Google Scholar 

  72. M.I. Lobanov, N.S. Bogatyreva, O.V. Galzitskaia, Radius of gyration is indicator of compactness of protein structure. Mol Biol (Mosk) 42, 701–706 (2008)

    Article  PubMed  Google Scholar 

  73. E. Durham, B. Dorr, N. Woetzel, R. Staritzbichler, J. Meiler, Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J. Mol. Model. 15, 1093–1108 (2009). https://doi.org/10.1007/s00894-009-0454-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Y. Mazola, O. Guirola, S. Palomares, G. Chinea, C. Menéndez, L. Hernández, A. Musacchio, A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes. J. Mol. Model. 21, 228 (2015). https://doi.org/10.1007/s00894-015-2772-4

    Article  CAS  PubMed  Google Scholar 

  75. J.A. Marsh, S.A. Teichmann, Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 19, 859–867 (2011). https://doi.org/10.1016/j.str.2011.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M.S. Weiss, M. Brandl, J. Sühnel, D. Pal, R. Hilgenfeld, More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26, 521–523 (2001). https://doi.org/10.1016/s0968-0004(01)01935-1

    Article  CAS  PubMed  Google Scholar 

  77. C.N. Pace, H. Fu, K. Lee Fryar, J. Landua, S.R. Trevino, D. Schell, R.L. Thurlkill, S. Imura, J.M. Scholtz, K. Gajiwala, J. Sevcik, L. Urbanikova, J.K. Myers, K. Takano, E.J. Hebert, B.A. Shirley, G.R. Grimsley, Contribution of hydrogen bonds to protein stability. Protein Sci. 23, 652–661 (2014). https://doi.org/10.1002/pro.2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Y. Gao, Y. Mei, J.Z.H. Zhang, Treatment of hydrogen bonds in protein simulations, in Advanced Materials for Renewable Hydrogen Production, Storage and Utilization, ed. by J. Liu, (InTech, Rijeka, 2015). https://doi.org/10.5772/61049

    Chapter  Google Scholar 

  79. R. Shukla, T. Tripathi, Molecular dynamics simulation in drug discovery: opportunities and challenges, in Innovations and Implementations of Drug Discovery Strategies in Rational Drug Design, ed. by S.K. Singh, (Springer, Singapore, 2021), pp. 295–316. https://doi.org/10.1007/978-981-15-8936-2_12

    Chapter  Google Scholar 

  80. R. Shukla, T. Tripathi, Molecular dynamics simulation of protein and protein-ligand complexes, in Computer-Aided Drug Design, ed. by D.B. Singh, (Springer, Singapore, 2020), pp. 133–161. https://doi.org/10.1007/978-981-15-6815-2_7

    Chapter  Google Scholar 

  81. K. Prince, S. Sasidharan, N. Nag, T. Tripathi, P. Saudagar, Integration of spectroscopic and computational data to analyze protein structure, function, folding, and dynamics, in Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics, ed. by P. Saudagar, T. Tripathi, (Academic Press, San Diego, 2023), pp. 483–520

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Ojha, K.K. (2023). Molecular Dynamics Simulation Methods to Study Structural Dynamics of Proteins. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_5

Download citation

Publish with us

Policies and ethics