Skip to main content

The Aging Patterns of Brain Structure, Function, and Energy Metabolism

  • Chapter
  • First Online:
Cognitive Aging and Brain Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1419))

Abstract

The normal aging process brings changes in brain structure, function, and energy metabolism, which are presumed to contribute to the age-related decline in brain function and cognitive ability. This chapter aims to summarize the aging patterns of brain structure, function, and energy metabolism to distinguish them from the pathological changes associated with neurodegenerative diseases and explore protective factors in aging. We first described the normal atrophy pattern of cortical gray matter with age, which is negatively affected by some neurodegenerative diseases and is protected by a healthy lifestyle, such as physical exercise. Next, we summarized the main types of age-related white matter lesions, including white matter atrophy and hyperintensity. Age-related white matter changes mainly occurred in the frontal lobe, and white matter lesions in posterior regions may be an early sign of Alzheimer’s disease. In addition, the relationship between brain activity and various cognitive functions during aging was discussed based on electroencephalography, magnetoencephalogram, and functional magnetic resonance imaging. An age-related reduction in occipital activity is coupled with increased frontal activity, which supports the posterior–anterior shift in aging (PASA) theory. Finally, we discussed the relationship between amyloid-β deposition and tau accumulation in the brain, as pathological manifestations of neurodegenerative disease and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leong RLF, Lo JC, Sim SKY, Zheng H, Tandi J, Zhou J et al (2017) Longitudinal brain structure and cognitive changes over eight years in an east Asian cohort. NeuroImage 147:852–860

    Article  PubMed  Google Scholar 

  2. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60(7):989–994

    Article  PubMed  Google Scholar 

  3. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14(1 Pt 1):21–36

    Article  CAS  PubMed  Google Scholar 

  4. Kim RE, Yun CH, Thomas RJ, Oh JH, Johnson HJ, Kim S et al (2018) Lifestyle-dependent brain change: a longitudinal cohort MRI study. Neurobiol Aging 69:48–57

    Article  PubMed  Google Scholar 

  5. Fletcher E, Gavett B, Harvey D, Farias ST, Olichney J, Beckett L et al (2018) Brain volume change and cognitive trajectories in aging. Neuropsychology 32(4):436–449

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen FX, Kang DZ, Chen FY, Liu Y, Wu G, Li X et al (2016) Gray matter atrophy associated with mild cognitive impairment in Parkinson’s disease. Neurosci Lett 617:160–165

    Article  CAS  PubMed  Google Scholar 

  7. Phillips JS, Da Re F, Dratch L, Xie SX, Irwin DJ, McMillan CT et al (2018) Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer’s disease. Neurobiol Aging 63:75–87

    Article  PubMed  Google Scholar 

  8. van der Zande JJ, Steenwijk MD, Ten Kate M, Wattjes MP, Scheltens P, Lemstra AW (2018) Gray matter atrophy in dementia with Lewy bodies with and without concomitant Alzheimer’s disease pathology. Neurobiol Aging 71:171–178

    Article  PubMed  Google Scholar 

  9. Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ et al (2018) Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol 83(2):210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M et al (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72(22):1906–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Last N, Tufts E, Auger LE (2017) The effects of meditation on gray matter atrophy and neurodegeneration: a systematic review. J Alzheimers Dis 56(1):275–286

    Article  PubMed  Google Scholar 

  12. Luders E, Kurth F, Toga AW, Narr KL, Gaser C (2013) Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping. Front Psychol 4:398

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luders E, Toga AW, Lepore N, Gaser C (2009) The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. NeuroImage 45(3):672–678

    Article  PubMed  Google Scholar 

  14. Erickson KI, Leckie RL, Weinstein AM (2014) Physical activity, fitness, and gray matter volume. Neurobiol Aging 35(Suppl 2):S20–S28

    Article  PubMed  Google Scholar 

  15. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. PNAS 97(10):5621–5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Acosta-Cabronero J, Williams GB, Pengas G, Nestor PJ (2010) Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain 133(2):529–539

    Article  PubMed  Google Scholar 

  17. Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, Solé-Padullés C et al (2012) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging 33(1):61–74

    Article  PubMed  Google Scholar 

  18. Huang J, Friedland RP, Auchus AP (2007) Diffusion tensor imaging of Normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: preliminary evidence of axonal degeneration in the temporal lobe. Am J Neuroradiol 28(10):1943–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Dwyer L, Lamberton F, Bokde ALW, Ewers M, Faluyi YO, Tanner C et al (2011) Multiple indices of diffusion identifies white matter damage in mild cognitive impairment and Alzheimer’s disease. PLoS One 6(6):e21745

    Article  PubMed  PubMed Central  Google Scholar 

  20. SPRINT MIND Investigators for the SPRINT Research Group, Nasrallah IM, Pajewski NM, Auchus AP, Chelune G, Cheung AK, Cleveland ML et al (2019) Association of Intensive vs standard blood pressure control with cerebral white matter lesions. JAMA 322(6):524–534

    Article  Google Scholar 

  21. Pakkenberg B, Gundersen HJG (1998) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320

    Article  Google Scholar 

  22. Geng Z, Liu H, Wang L, Zhu Q, Lv H (2016) A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain. Neuropsych Dis Treat 12(Issue 1):453

    Article  Google Scholar 

  23. Shankar SK (2010) Biology of aging brain. Indian J Pathol Microbiol 53(4):595–604

    Article  CAS  PubMed  Google Scholar 

  24. Boone KB, Miller BL, Lesser IM, Mehringer CM, Hill-Gutierrez E, Goldberg MA et al (1992) Neuropsychological correlates of white-matter lesions in healthy elderly subjects. A threshold effect. Arch Neurol 49(5):549–554

    Article  CAS  PubMed  Google Scholar 

  25. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB (2000) Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet (London, England) 356(9230):628–634

    Article  CAS  PubMed  Google Scholar 

  26. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237(1):251–257

    Article  PubMed  Google Scholar 

  27. Salarirad S, Staff RT, Fox HC, Deary IJ, Whalley L, Murray AD (2011) Childhood intelligence and brain white matter hyperintensities predict fluid intelligence age 78-81 years: a 1921 Aberdeen birth cohort study. Age Ageing 40(5):562–567

    Article  PubMed  Google Scholar 

  28. de Groot M, Ikram MA, Akoudad S, Krestin GP, Hofman A, van der Lugt A et al (2015) Tract-specific white matter degeneration in aging: the Rotterdam study. Alzheimers Dement 11(3):321–330

    Article  PubMed  Google Scholar 

  29. Ziegler DA, Piguet O, Salat DH, Prince K, Connally E, Corkin S (2010) Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiol Aging 31(11):1912–1926

    Article  PubMed  Google Scholar 

  30. Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26(9):1245–1260

    Article  PubMed  Google Scholar 

  31. Cees De Groot J, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J et al (2000) Cerebral white matter lesions and cognitive function: the Rotterdam scan study. Ann Neurol 47(2):145–151

    Article  Google Scholar 

  32. Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, Conturo TE et al (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14(4):410–423

    Article  PubMed  Google Scholar 

  33. Ardekani S, Kumar A, Bartzokis G, Sinha U (2007) Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn Reson Imaging 25(2):154–167

    Article  PubMed  Google Scholar 

  34. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730

    Article  PubMed  Google Scholar 

  35. Bartres-Faz D, Clemente IC, Junque C (2001) White matter changes and cognitive performance in aging. Rev Neurol 33(4):347–353

    CAS  PubMed  Google Scholar 

  36. Kim D, Moon Y (2013) The relationship between depressive symptoms and white matter lesions in elderly individuals with cognitive impairment. Alzheimer’s & Dementia

    Google Scholar 

  37. Babiloni C, Binetti G, Cassarino A, Dal Forno G, Del Percio C, Ferreri F et al (2006) Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study. Hum Brain Mapp 27(2):162–172

    Article  PubMed  Google Scholar 

  38. Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F et al (2006) Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 117(2):252–268

    Article  PubMed  Google Scholar 

  39. Choi J, Ku B, You YG, Jo M, Kwon M, Choi Y et al (2019) Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals. Sci Rep 9(1):1–15

    Google Scholar 

  40. Garcés P, Vicente R, Wibral M, Pineda Pardo JA, López ME, Aurtenetxe S et al (2013) Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment. Front Aging Neurosci 5:100

    Article  PubMed  PubMed Central  Google Scholar 

  41. Babiloni C, Visser PJ, Frisoni G, De Deyn PP, Bresciani L, Jelic V et al (2010) Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint. Neurobiol Aging 31(10):1787–1798

    Article  PubMed  Google Scholar 

  42. Babiloni C, Triggiani AI, Lizio R, Cordone S, Tattoli G, Bevilacqua V et al (2016) Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front Neurosci 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stomrud E, Hansson O, Minthon L, Blennow K, Rosén I, Londos E (2010) Slowing of EEG correlates with CSF biomarkers and reduced cognitive speed in elderly with normal cognition over 4 years. Neurobiol Aging 31(2):215–223

    Article  CAS  PubMed  Google Scholar 

  44. Hot P, Rauchs G, Bertran F, Denise P, Desgranges B, Clochon P et al (2011) Changes in sleep theta rhythm are related to episodic memory impairment in early Alzheimer’s disease. Biol Psychol 87(3):334–339

    Article  PubMed  Google Scholar 

  45. Reinhart RM, Nguyen JA (2019) Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 22(5):820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Solesio-Jofre E, Lorenzo-López L, Gutiérrez R, López-Frutos JM, Ruiz-Vargas JM, Maestú F (2011) Age effects on retroactive interference during working memory maintenance. Biol Psychol 88(1):72–82

    Article  PubMed  Google Scholar 

  47. Solesio-Jofre E, Lorenzo-López L, Gutiérrez R, López-Frutos JM, Ruiz-Vargas JM, Maestú F et al (2012) Age-related effects in working memory recognition modulated by retroactive interference. J Gerontol A Biomed Sci Med Sci 67(6):565–572

    Article  Google Scholar 

  48. García-Pacios J, Gutiérrez R, Solesio E, Moratti S, Ruiz-Vargas JM, López-Frutos JM et al (2013) Early prefrontal activation as a mechanism to prevent forgetting in the context of interference. Am J Geriatr Psychiatry 21(6):580–588

    Article  PubMed  Google Scholar 

  49. Fernández A, Maestú F, Amo C, Gil P, Fehr T, Wienbruch C et al (2002) Focal temporoparietal slow activity in Alzheimer’s disease revealed by magnetoencephalography. Biol Psychiatry 52(7):764–770

    Article  PubMed  Google Scholar 

  50. Fernández A, Arrazola J, Maestú F, Amo C, Gil-Gregorio P, Wienbruch C et al (2003) Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. Am J Neuroradiol 24(3):481–487

    PubMed  PubMed Central  Google Scholar 

  51. Fakhri M, Sikaroodi H, Maleki F, Oghabian MA, Ghanaati H (2012) Age-related frontal hyperactivation observed across different working memory tasks: An fMRI study. Behav Neurol 25(4):351–361

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5(2):87–96

    Article  CAS  PubMed  Google Scholar 

  53. Grady CL, Craik FI (2000) Changes in memory processing with age. Curr Opin Neurobiol 10(2):224–231

    Article  CAS  PubMed  Google Scholar 

  54. Rypma B (2000) Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci 3:509–515

    Article  CAS  PubMed  Google Scholar 

  55. Stebbins GT, Carrillo MC, Dorfman J, Dirksen C, Desmond JE, Turner DA et al (2002) Aging effects on memory encoding in the frontal lobes. Psychol Aging 17(1):44–55

    Article  PubMed  Google Scholar 

  56. Bergerbest D, JDE G, Whitfield-Gabrieli S, Kim H, Stebbins GT, Bennett DA et al (2009) Age-associated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. NeuroImage 45(1):237–246

    Article  CAS  PubMed  Google Scholar 

  57. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208

    Article  CAS  PubMed  Google Scholar 

  58. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14(4):364–375

    Article  PubMed  Google Scholar 

  59. Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128(Pt 9):1964–1983

    Article  PubMed  Google Scholar 

  60. Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17(3):1394–1402

    Article  PubMed  Google Scholar 

  61. Beeri MS, Lee H, Cheng H, Wollman D, Silverman JM, Prohovnik I (2011) Memory activation in healthy nonagenarians. Neurobiol Aging 32(3):515–523

    Article  PubMed  Google Scholar 

  62. Hutchinson S, Kobayashi M, Horkan CM, Pascual-Leone A, Alexander MP, Schlaug G (2002) Age-related differences in movement representation. NeuroImage 17(4):1720–1728

    Article  CAS  PubMed  Google Scholar 

  63. Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126(Pt 4):873–888

    Article  CAS  PubMed  Google Scholar 

  64. Smith CD, Umberger GH, Manning EL, Slevin JT, Wekstein DR, Schmitt FA et al (1999) Critical decline in fine motor hand movements in human aging. Neurology 53(7):1458–1461

    Article  CAS  PubMed  Google Scholar 

  65. Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB (2005) Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol 93(3):1209–1222

    Article  PubMed  Google Scholar 

  66. Naccarato M, Calautti C, Jones PS, Day DJ, Carpenter TA, Baron JC (2006) Does healthy aging affect the hemispheric activation balance during paced index-to-thumb opposition task? An fMRI study. Neuroimage 32(3):1250–1256

    Article  CAS  PubMed  Google Scholar 

  67. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH et al (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58(4):630–635

    Article  CAS  PubMed  Google Scholar 

  68. Riecker A, Groschel K, Ackermann H, Steinbrink C, Witte O, Kastrup A (2006) Functional significance of age-related differences in motor activation patterns. NeuroImage 32(3):1345–1354

    Article  PubMed  Google Scholar 

  69. Li HJ, Hou XH, Liu HH, Yue CL, Lu GM, Zuo XN (2015) Putting age-related task activation into large-scale brain networks: a meta-analysis of 114 fMRI studies on healthy aging. Neurosci Biobehav Rev 57:156–174

    Article  PubMed  Google Scholar 

  70. Spreng RN, Wojtowicz M, Grady CL (2010) Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34(8):1178–1194

    Article  PubMed  Google Scholar 

  71. Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis MJ, Salerno JA et al (1994) Age-related changes in cortical blood flow activation during visual processing of faces and location. J Neurosci 14(3 Pt 2):1450–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cappell RLA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17(3):177–182

    Article  Google Scholar 

  73. Huettel SA, Singerman JD, McCarthy G (2001) The effects of aging upon the hemodynamic response measured by functional MRI. NeuroImage 13(1):161–175

    Article  CAS  PubMed  Google Scholar 

  74. Iidaka T, Sadato N, Yamada H, Murata T, Omori M, Yonekura Y (2001) An fMRI study of the functional neuroanatomy of picture encoding in younger and older adults. Brain Res Cogn Brain Res 11(1):1–11

    Article  CAS  PubMed  Google Scholar 

  75. Madden DJ, Turkington TG, Provenzale JM, Denny LL, Langley LK, Hawk TC et al (2002) Aging and attentional guidance during visual search: functional neuroanatomy by positron emission tomography. Psychol Aging 17(1):24–43

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nyberg L, Sandblom J, Jones S, Neely AS, Petersson KM, Ingvar M et al (2003) Neural correlates of training-related memory improvement in adulthood and aging. Proc Natl Acad Sci U S A 100(23):13728–13733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meulenbroek O, Petersson KM, Voermans N, Weber B, Fernandez G (2004) Age differences in neural correlates of route encoding and route recognition. NeuroImage 22(4):1503–1514

    Article  PubMed  Google Scholar 

  78. Grossman M, Cooke A, DeVita C, Alsop D, Detre J, Chen W et al (2002) Age-related changes in working memory during sentence comprehension: an fMRI study. NeuroImage 15(2):302–317

    Article  PubMed  Google Scholar 

  79. Dennis NA, Daselaar S, Cabeza R (2007) Effects of aging on transient and sustained successful memory encoding activity. Neurobiol Aging 28(11):1749–1758

    Article  PubMed  Google Scholar 

  80. Gutchess AH, Welsh RC, Hedden T, Bangert A, Minear M, Liu LL et al (2005) Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci 17(1):84–96

    Article  PubMed  Google Scholar 

  81. Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C (2003) Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 126(Pt 1):43–56

    Article  CAS  PubMed  Google Scholar 

  82. Milham MP, Erickson KI, Banich MT, Kramer AF, Webb A, Wszalek T et al (2002) Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain Cogn 49(3):277–296

    Article  PubMed  Google Scholar 

  83. Ford JH, Kensinger EA (2017) Age-related reversals in neural recruitment across memory retrieval phases. J Neurosci 37(20):5172–5182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dew IT, Buchler N, Dobbins IG, Cabeza R (2012) Where is ELSA? The early to late shift in aging. Cereb Cortex 22(11):2542–2553

    Article  PubMed  Google Scholar 

  85. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4):535–562

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chetelat G, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F et al (2013) Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage Clin 2:356–365

    Article  PubMed  PubMed Central  Google Scholar 

  89. Storandt M, Mintun MA, Head D, Morris JCJA, o. n. (2009) Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Aβ deposition. Arch Neurol 66(12):1476–1481

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D et al (2010) Brain atrophy in healthy aging is related to CSF levels of Aβ1-42. Cereb Cortex 20(9):2069–2079

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tosun D, Schuff N, Truran-Sacrey D, Shaw LM, Trojanowski JQ, Aisen P et al (2010) Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study. Neurobiol Aging 31(8):1340–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becker JA, Hedden T, Carmasin J, Maye J, Rentz DM, Putcha D et al (2011) Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol 69(6):1032–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. De Leon M, DeSanti S, Zinkowski R, Mehta P, Pratico D, Segal S et al (2006) Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 27(3):394–401

    Article  PubMed  Google Scholar 

  94. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D et al (2010) CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J Neurosci 30(6):2088–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hedden T, Oh H, Younger AP, Patel TAJN (2013) Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology 80(14):1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65(11):1509–1517

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jansen WJ, Ossenkoppele R, Tijms BM, Fagan AM, Hansson O, Klunk WE et al (2018) Association of cerebral amyloid-β aggregation with cognitive functioning in persons without dementia. JAMA Psychiatry 75(1):84–95

    Article  PubMed  Google Scholar 

  98. Donohue MC, Sperling RA, Petersen R, Sun C-K, Weiner MW, Aisen PSJJ (2017) Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317(22):2305–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM et al (2015) Existing Pittsburgh compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain 138(Pt 7):2020–2033

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G et al (2010) Amyloid imaging results from the Australian imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31(8):1275–1283

    Article  PubMed  Google Scholar 

  101. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68(3):319–329

    Article  PubMed  Google Scholar 

  102. Mielke MM, Wiste HJ, Weigand SD, Knopman DS, Lowe VJ, Roberts RO et al (2012) Indicators of amyloid burden in a population-based study of cognitively normal elderly. Neurology 79(15):1570–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W et al (2009) Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 106(16):6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G et al (2007) Imaging β-amyloid burden in aging and dementia. Neurology 68(20):1718–1725

    Article  CAS  PubMed  Google Scholar 

  105. Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P et al (2013) Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging 34(1):1–12

    Article  CAS  PubMed  Google Scholar 

  106. Mosconi L, Rinne JO, Tsui WH, Berti V, Li Y, Wang H et al (2010) Increased fibrillar amyloid-β burden in normal individuals with a family history of late-onset Alzheimer’s. Proc Natl Acad Sci 107(13):5949–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rentz DM, Locascio JJ, Becker JA, Moran EK, Eng E, Buckner RL et al (2010) Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 67(3):353–364

    PubMed  Google Scholar 

  108. Head D, Bugg JM, Goate AM, Fagan AM, Mintun MA, Benzinger T et al (2012) Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch Neurol 69(5):636–643

    Article  PubMed  PubMed Central  Google Scholar 

  109. Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969

    Article  CAS  PubMed  Google Scholar 

  110. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128(6):755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119

    Article  PubMed  Google Scholar 

  112. Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R et al (2016) PET imaging of tau deposition in the aging human brain. Neuron 89(5):971–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sonnen JA, Santa Cruz K, Hemmy LS, Woltjer R, Leverenz JB, Montine KS et al (2011) Ecology of the aging human brain. Arch Neurol 68(8):1049–1056

    Article  PubMed  PubMed Central  Google Scholar 

  114. Maass A, Lockhart SN, Harrison TM, Bell RK, Mellinger T, Swinnerton K et al (2018) Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J Neurosci 38(3):530–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hanseeuw BJ, Betensky RA, Schultz AP, Papp KV, Mormino EC, Sepulcre J et al (2017) Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline. Ann Neurol 81(4):583–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sepulcre J, Sabuncu MR, Li Q, El Fakhri G, Sperling R, Johnson KA et al (2017) Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimers Dement 13(11):1261–1269

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jellinger K, Attems J (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 113(2):107–117

    Article  CAS  PubMed  Google Scholar 

  118. Yamada MJN (2003) Senile dementia of the neurofibrillary tangle type (tangle-only dementia): neuropathological criteria and clinical guidelines for diagnosis. Neuropathology 23(4):311–317

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dang, M., Sang, F., Long, S., Chen, Y. (2023). The Aging Patterns of Brain Structure, Function, and Energy Metabolism. In: Zhang, Z. (eds) Cognitive Aging and Brain Health. Advances in Experimental Medicine and Biology, vol 1419. Springer, Singapore. https://doi.org/10.1007/978-981-99-1627-6_7

Download citation

Publish with us

Policies and ethics