Skip to main content

Role of Human Microbiome in Cardiovascular Disease: Therapeutic Potential and Challenges

  • Chapter
  • First Online:
Probiotics, Prebiotics, Synbiotics, and Postbiotics

Abstract

Cardiovascular diseases (CVDs) are the most prevalent cause of morbidity and morbidity worldwide. The human microbiome has been reported to have a role in the development of human disorders, most notably in cardiovascular diseases. Modifications in gut microbiota are reflected in the increasing number of human and animal studies which precipitate the start of CVDs. In addition, intestinal flora transforms the host’s food into metabolites such as trimethylamine N-oxide, short-chain fatty acids, secondary bile acid, and indoxyl sulphate, influence the physiological processes by triggering several signalling pathways. This comprehensive review summarises the role of gut microbiota in CVD pathogenesis, emphasising human metabolites, prospective CVD therapy options, and problems in addressing flora composition and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Spence JD (2021) Sex differences in the intestinal microbiome: interactions with risk factors for atherosclerosis and cardiovascular disease. Biol Sex Differ 12(1):35. https://doi.org/10.1186/s13293-021-00378-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida C, Barata P, Fernandes R (2021) The influence of gut microbiota in cardiovascular diseases—a brief review. Porto Biomed J 6(1):e106. https://doi.org/10.1097/j.pbj.0000000000000106

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson C, Vasan RS (2018) Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol 15(4):230–240

    PubMed  Google Scholar 

  • Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S et al (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139(11):1407–1421. https://doi.org/10.1161/CIRCULATIONAHA.118.036652

    Article  CAS  PubMed  Google Scholar 

  • Behrouzi A, Nafari AH, Siadat SD (2019) The significance of microbiome in personalized medicine. Clin Transl Med 8(1):16. https://doi.org/10.1186/s40169-019-0232-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46(4):562–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron N, Williams PT, Lamendella R, Faghihnia N, Grube A, Li X et al (2016) Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. Br J Nutr 116(12):2020–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8(1):1–12. https://doi.org/10.1186/s13073-016-0303-2

    Article  CAS  Google Scholar 

  • Brown JM, Hazen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 66:343–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai JJ, Liu Y, Wang J, Wang JX, Wang Y, Xu SB et al (2022) Lactobacillus levels and prognosis of patients with acute myocardial infarction. J Geriatr Cardiol 19(2):101–114. https://doi.org/10.11909/j.issn.1671-5411.2022.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M-l, Yi L, Zhang Y, Zhou X, Ran L, Yang J et al (2016) Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 7(2):e02210–e02215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PB, Black AS, Sobel AL, Zhao Y, Mukherjee P, Molparia B et al (2020) Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat Biotechnol 38(11):1288–1297. https://doi.org/10.1038/s41587-020-0549-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HQ, Gong JY, Xing K, Liu MZ, Ren H, Luo JQ (2022) Pharmacomicrobiomics: exploiting the drug-microbiota interactions in antihypertensive treatment. Front Med (Lausanne) 8:742394. https://doi.org/10.3389/fmed.2021.742394

    Article  PubMed  Google Scholar 

  • Chiang JY (2009) Bile acids: regulation of synthesis: thematic review series: bile acids. J Lipid Res 50(10):1955–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curini L, Amedei A (2021) Cardiovascular diseases and pharmacomicrobiomics: a perspective on possible treatment relevance. Biomedicine 9(10):1–13. https://doi.org/10.3390/biomedicines9101338

    Article  CAS  Google Scholar 

  • Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T et al (2017) Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels 32(1):39–46

    PubMed  Google Scholar 

  • Endres K, Schäfer K-H (2018) Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J Innate Immun 10(3):172–180

    PubMed  PubMed Central  Google Scholar 

  • Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19(1):55–71. https://doi.org/10.1038/s41579-020-0433-9

    Article  CAS  PubMed  Google Scholar 

  • Fedorova OV, Zernetkina VI, Shilova VY, Grigorova YN, Juhasz O, Wei W et al (2015) Synthesis of an endogenous steroidal Na pump inhibitor marinobufagenin, implicated in human cardiovascular diseases, is initiated by CYP27A1 via bile acid pathway. Circ Cardiovasc Genet 8(5):736–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrell JM, Boehme S, Li F, Chiang JY (2016) Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders [S]. J Lipid Res 57(7):1144–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040. https://doi.org/10.1007/s10482-020-01474-7

    Article  PubMed  Google Scholar 

  • Gózd-Barszczewska A, Kozioł-Montewka M, Barszczewski P, Młodzińska A, Humińska K (2017) Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med 24(3):416–422. https://doi.org/10.26444/aaem/75456

    Article  CAS  PubMed  Google Scholar 

  • Grabherr F, Grander C, Effenberger M, Adolph TE, Tilg H (2019) Gut dysfunction and non-alcoholic fatty liver disease. Front Endocrinol 10:611

    Google Scholar 

  • Guerrero-Bonmatty R, Gil-Fernández G, Rodríguez-Velasco FJ, Espadaler-Mazo J (2021) A combination of Lactiplantibacillus plantarum strains CECT7527, CECT7528, and CECT7529 plus monacolin K reduces blood cholesterol: results from a randomized, double-blind, placebo-controlled study. Nutrients 13(4):1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gui T, Shimokado A, Sun Y, Akasaka T, Muragaki Y (2012) Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm 2012:693083

    PubMed  PubMed Central  Google Scholar 

  • Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T (2021) The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes 13(1):1–22. https://doi.org/10.1080/19490976.2021.1882927

    Article  CAS  PubMed  Google Scholar 

  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    CAS  Google Scholar 

  • Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M (2018) Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10(10):1398

    PubMed  PubMed Central  Google Scholar 

  • Jethwani P, Grover K (2019) Gut microbiota in health and diseases—a review. Int J Curr Microbiol App Sci 8(8):1586–1599

    CAS  Google Scholar 

  • Jiang T, Xing X, Zhang L, Liu Z, Zhao J, Liu X (2019) Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics. Oxid Med Cell Longev 2019:7658052

    PubMed  PubMed Central  Google Scholar 

  • Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3(1):1–8

    Google Scholar 

  • Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI et al (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3(12):1461–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S (2020) Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 8(1):36. https://doi.org/10.1186/s40168-020-00821-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu W-K, Orekhov AN (2020) A novel insight at atherogenesis: the role of microbiome. Front Cell Dev Biol 8:586189. https://doi.org/10.3389/fcell.2020.586189

    Article  PubMed  PubMed Central  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komaroff AL (2018) The microbiome and risk for atherosclerosis. JAMA 319(23):2381–2382. https://doi.org/10.1001/jama.2018.5240

    Article  PubMed  Google Scholar 

  • Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE (2016) Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PloS One 11(8):e0160840

    PubMed  PubMed Central  Google Scholar 

  • Lazar V, Ditu L-M, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM et al (2018) Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 9:1830

    PubMed  PubMed Central  Google Scholar 

  • Lederberg J, McCray AT (2001) Ome sweet omics—a genealogical treasury of words. Sci J 15(7):8

    Google Scholar 

  • Lee JG, Lee J, Lee AR, Jo SV, Park CH, Han DS et al (2022) Impact of short-chain fatty acid supplementation on gut inflammation and microbiota composition in a murine colitis model. J Nutr Biochem 101:108926. https://doi.org/10.1016/j.jnutbio.2021.108926

    Article  CAS  PubMed  Google Scholar 

  • Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L et al (2017) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38(11):814–824. https://doi.org/10.1093/eurheartj/ehw582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yu Z, Liu Y, Wang T, Liu Y, Bai Z et al (2022) Dietary α-linolenic acid-rich flaxseed oil ameliorates high-fat diet-induced atherosclerosis via gut microbiota-inflammation-artery axis in ApoE (−/−) mice. Front Cardiovasc Med 9:830781. https://doi.org/10.3389/fcvm.2022.830781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Yang X, Yuan P, Yang J, Wang P, Zhong H et al (2019) Undernutrition shapes the gut microbiota and bile acid profile in association with altered gut-liver FXR signaling in weaning pigs. J Agric Food Chem 67(13):3691–3701

    CAS  PubMed  Google Scholar 

  • Lindskog Jonsson A, Caesar R, Akrami R, Reinhardt C, Fåk Hållenius F, Borén J et al (2018) Impact of gut microbiota and diet on the development of atherosclerosis in Apoe−/− mice. Arterioscler Thromb Vasc Biol 38(10):2318–2326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T-X, Niu H-T, Zhang S-Y (2015) Intestinal microbiota metabolism and atherosclerosis. Chin Med J (Engl) 128(20):2805–2811

    CAS  PubMed  Google Scholar 

  • Liu A, Zhang Y, Xun S, Sun M (2022) Trimethylamine N-oxide promotes atherosclerosis via regulating the enriched abundant transcript 1/miR-370-3p/signal transducer and activator of transcription 3/flavin-containing monooxygenase-3 axis. Bioengineered 13(1):1541–1553. https://doi.org/10.1080/21655979.2021.2010312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Li H (2018) The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol 9:1082. https://doi.org/10.3389/fphar.2018.01082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60

    CAS  PubMed  Google Scholar 

  • Mills S, Stanton C, Lane JA, Smith GJ, Ross RP (2019) Precision nutrition and the microbiome, part I: current state of the science. Nutrients 11(4):923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy AJ, Akhtari M, Tolani S, Pagler T, Bijl N, Kuo C-L et al (2011) ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 121(10):4138–4149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal R, Wang S, Ahmadi S, Hayes J, Gagliano J, Subashchandrabose S et al (2018) Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep 8(1):1–15

    Google Scholar 

  • Olas B (2020) Probiotics, prebiotics and synbiotics—a promising strategy in prevention and treatment of cardiovascular diseases? Int J Mol Sci 21(24):9737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson LE, Bäckhed F (2022) The metabolic role and therapeutic potential of the microbiome. Endocr Rev 43:1–20. https://doi.org/10.1210/endrev/bnac004

    Article  Google Scholar 

  • Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M et al (2018) Intestinal microbiota influences non-intestinal related autoimmune diseases. Front Microbiol 9:432

    PubMed  PubMed Central  Google Scholar 

  • Ott SJ, El Mokhtari NE, Musfeldt M, Hellmig S, Freitag S, Rehman A et al (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113(7):929–937

    PubMed  Google Scholar 

  • Panyod S, Wu W-K, Chen P-C, Chong K-V, Yang Y-T, Chuang H-L et al (2022) Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes 8(1):4. https://doi.org/10.1038/s41522-022-00266-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez NB, Dorsen C, Squires A (2020) Dysbiosis of the gut microbiome: a concept analysis. J Holist Nurs 38(2):223–232

    PubMed  Google Scholar 

  • Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y et al (2013) Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur Heart J 34(24):1834–1845

    CAS  PubMed  Google Scholar 

  • Rainer PP, Primessnig U, Harenkamp S, Doleschal B, Wallner M, Fauler G et al (2013) Bile acids induce arrhythmias in human atrial myocardium—implications for altered serum bile acid composition in patients with atrial fibrillation. Heart 99(22):1685–1692

    CAS  PubMed  Google Scholar 

  • Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N et al (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159):1736–1788

    Google Scholar 

  • Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215

    CAS  PubMed  Google Scholar 

  • Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240

    Google Scholar 

  • Skye SM, Zhu W, Romano KA, Guo C-J, Wang Z, Jia X et al (2018) Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ Res 123(10):1164–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley D, Moore RJ, Wong CH (2018) An insight into intestinal mucosal microbiota disruption after stroke. Sci Rep 8(1):1–12

    Google Scholar 

  • Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R et al (2010) Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 17(8):796–804

    CAS  PubMed  Google Scholar 

  • Talmor-Barkan Y, Bar N, Shaul AA, Shahaf N, Godneva A, Bussi Y et al (2022) Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med 28(2):295–302. https://doi.org/10.1038/s41591-022-01686-6

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend N, Kazakiewicz D, Lucy Wright F, Timmis A, Huculeci R, Torbica A et al (2022) Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol 19(2):133–143. https://doi.org/10.1038/s41569-021-00607-3

    Article  PubMed  Google Scholar 

  • Trøseid M, Andersen GØ, Broch K, Hov JR (2020) The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine 52:102649. https://doi.org/10.1016/j.ebiom.2020.102649

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuei J, Chau T, Mills D, Wan Y-JY (2014) Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med 239(11):1489–1504

    Google Scholar 

  • Tuteja S, Ferguson JF (2019) Gut microbiome and response to cardiovascular drugs. Circ Genom Precis Med 12(9):421–429. https://doi.org/10.1161/CIRCGEN.119.002314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, Forslund SK, Assmann K, Valles-Colomer M, Nguyen TTD, Proost S, Prifti E, Tremaroli V, Pons N, Le Chatelier E, Andreelli F, Bastard JP, Coelho LP, Galleron N, Hansen TH et al (2020) Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581(7808):310–315. https://doi.org/10.1038/s41586-020-2269-x

    Article  CAS  PubMed  Google Scholar 

  • Villéger R, Lopès A, Carrier G, Veziant J, Billard E, Barnich N et al (2019) Intestinal microbiota: a novel target to improve anti-tumor treatment? Int J Mol Sci 20(18):4584

    PubMed  PubMed Central  Google Scholar 

  • Vlasov A, Shperling M, Terkin D, Bystrova O, Osipov G, Salikova S et al (2020) Effect of prebiotic complex on gut microbiota and endotoxemia in female rats with modeled heart failure. Bull Exp Biol Med 168(4):435–438

    CAS  PubMed  Google Scholar 

  • Wan C, Zhu C, Jin G, Zhu M, Hua J, He Y (2021) Analysis of gut microbiota in patients with coronary artery disease and hypertension. Evid Based Complement Alternat Med 2021:7195082. https://doi.org/10.1155/2021/7195082

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley N, Dinan T, Ross R, Stanton C, Clarke G, Cryan J (2017) The microbiota-gut-brain axis as a key regulator of neural function and the stress response: implications for human and animal health. J Anim Sci 95(7):3225–3246

    CAS  PubMed  Google Scholar 

  • Wright SD, Burton C, Hernandez M, Hassing H, Montenegro J, Mundt S et al (2000) Infectious agents are not necessary for murine atherogenesis. J Exp Med 191(8):1437–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Chiou J (2021) Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients 13(8):2878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu R, Nakano H, Chen K, Liu M, He X et al (2018) Modulation of gut microbiota by Lonicera caerulea L. berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules 23(12):3213

    PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang K, Wang X, Pang Y, Jiang C (2021a) The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 12(5):360–373. https://doi.org/10.1007/s13238-020-00814-7

    Article  PubMed  Google Scholar 

  • Wu Y, Xu H, Tu X, Gao Z (2021b) The role of short-chain fatty acids of gut microbiota origin in hypertension. Front Microbiol 12:730809. https://doi.org/10.3389/fmicb.2021.730809

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Emoto T, Sasaki N, Hirata K-i (2016) Gut microbiota and coronary artery disease. Int Heart J 57(6):663–671

    CAS  PubMed  Google Scholar 

  • Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G (2021) The varying effects of antibiotics on gut microbiota. AMB Express 11(1):116. https://doi.org/10.1186/s13568-021-01274-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z et al (2021) Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep 11(1):518. https://doi.org/10.1038/s41598-020-80063-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y et al (2019) The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 5(2):eaau8317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z et al (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1):111–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Shui X, Liang Z, Huang Z, Qi Y, He Y et al (2020) Gut microbiota metabolites as integral mediators in cardiovascular diseases (review). Int J Mol Med 46(3):936–948. https://doi.org/10.3892/ijmm.2020.4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee Hua Erin Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maran, S., Yeo, W.W.Y., Lai, K.S., Erin Lim, S.H. (2023). Role of Human Microbiome in Cardiovascular Disease: Therapeutic Potential and Challenges. In: Kothari, V., Kumar, P., Ray, S. (eds) Probiotics, Prebiotics, Synbiotics, and Postbiotics. Springer, Singapore. https://doi.org/10.1007/978-981-99-1463-0_13

Download citation

Publish with us

Policies and ethics