Skip to main content

Introduction to Precision Grinding and Injection Molding Micro/Nano Structures

  • Chapter
  • First Online:
Fabrication of Micro/Nano Structures via Precision Machining

Abstract

Microarray structures with high form accuracy and low surface roughness can be machined on the surface of polymer and high performance components including single crystal silicon carbide, ceramics and mold steel to produce new functional characteristics such as surface hydrophobicity and light efficiency enhancing. However, laser, etching, cutting and other methods are difficult to assure the 3D form accuracy and surface quality at micron scale. The technical bottleneck of micro-structure machining on the surface of hard and brittle materials is the truing and dressing of micro-tip of ultra-hard diamond grinding wheel. In consequence, a dry pulse discharge truing and dressing method of diamond grinding wheel is innovatively proposed. Firstly, the dry contact discharge dressing technology was used to dress the diamond grinding wheel into a V-shaped tip, and then the V-tip diamond grinding wheel was used to process smooth and regular micro-grooves or micro-pyramid array structures on the surface of hard and brittle materials such as ceramics, sapphire, single crystal silicon carbide or mold steel. After that the micro-structured mold steel mold core was precisely polished by water jet polishing technology to improve the surface quality. Finally, the micro-structure rapid prototyping of the mold core surface is copied to the polymer surface by micro injection molding technology, so that the mass production and manufacture of V-structured polymeric LED light guide plate can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maghsoudi K, Jafari R, Momen G, Farzaneh M (2017) Micro-nanostructured polymer surfaces using injection molding: a review. Mater Today Commun 13:126–143

    Article  Google Scholar 

  2. Gao S, Qiu Z, Ma Z, Ma Z, Yang YJ (2017) Development of high efficiency infrared-heating-assisted micro-injection molding for fabricating micro-needle array. Int J Adv Manuf Technol 92:831–838

    Article  Google Scholar 

  3. Chien H, Chen X, Tsai W, Lee M (2020) Inhibition of biofilm formation by rough shark skin-patterned surfaces. Colloids Surf B 186:110738

    Article  Google Scholar 

  4. Li X, Gong F, Liu D, He S, Yuan H, Dai L, Cai X, Liu J, Guo J, Jin Y, Sang F (2019) A lotus leaf based random laser. Org Electron 69:216–219

    Article  Google Scholar 

  5. Sethi S, Ge L, Ci L, Ajayan PM, Ali D (2008) Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett 8:822–825

    Article  Google Scholar 

  6. Choo S, Choi H, Lee H (2014) Replication of rose-petal surface structure using UV-nanoimprint lithography. Mater Lett 121:170–173

    Article  Google Scholar 

  7. Lei JG, Wu XY, Zhou ZW, Xu B, Zhu LK, Tang Y (2021) Sustainable mass production of blind multi-microgrooves by EDM with a long-laminated electrode. J Clean Prod 279:123492

    Article  Google Scholar 

  8. Jangra K, Grover S, Aggarwal A (2011) Digraph and matrix method for the performance evaluation of carbide compacting die manufactured by wire EDM. Int J Adv Manuf Technol 54:579–591

    Article  Google Scholar 

  9. Gong DW, Long JY, Fan PX, Jiang DF, Zhang HJ, Zhong ML (2015) Thermal stability of micro–nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template. Appl Surf Sci 331:437–443

    Article  Google Scholar 

  10. Zhang HJ, Yin SH, Jia HP, Huang S, Liu X, Li JX, Chen FJ (2019) Femtosecond laser machining process of tungsten carbide die for microfluidic grooves molding. Surf Technol 48:93–99

    Google Scholar 

  11. Wang RQ, Zhang ZY, Bai YY, Wang YC, Yin XL, Kong LS, Deng WJ, Xue DL, Zhang XJ (2021) Scanning ion beam etching: a method for the fabrication of computer-generated hologram with nanometric accuracy for aspherical testing. Opt Lasers Eng 139:106503

    Article  Google Scholar 

  12. Xie J, Zhuo YW, Tan TW (2011) Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel. Precis Eng 35:173–182

    Article  Google Scholar 

  13. Xie J, Luo MJ, He JL, He JL, Liu XR, Tan TW (2012) Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int J Precis Eng Manuf 13:1845–1852

    Article  Google Scholar 

  14. Xie J, Luo MJ, Wu KK, Yang LF, Li DH (2013) Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int J Mach Tools Manuf 73:25–36

    Article  Google Scholar 

  15. Xie J, Liu XR, Wu KK, Lu YJ, Li P (2013) Evaluation on 3D micro-ground profile accuracy of micro-pyramid-structured Si surface using an adaptive-orientation WLI measurement. Precis Eng 37:918–923

    Article  Google Scholar 

  16. Guo B, Zhao QL (2015) On-machine dry electric discharge truing of diamond wheels for micro-structured surfaces grinding. Int J Mach Tools Manuf 88:62–70

    Article  Google Scholar 

  17. Chen B, Li SC, Deng ZH, Guo B, Zhao QL (2017) Grinding marks on ultra-precision grinding spherical and aspheric surfaces. Int J Precis Eng Manuf Green Technol 4:419–429

    Article  Google Scholar 

  18. Ohmori H, Takahashi I, Bandyopadhyay BP (1996) Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding. J Mater Process Technol 57:272–277

    Article  Google Scholar 

  19. Weingärtner E, Roth R, Kuster F, Boccadoro M, Fiebelkorn F (2012) Electrical discharge dressing and its influence on metal bonded diamond wheels. CIRP Ann Manuf Technol 61:183–186

    Article  Google Scholar 

  20. Ramesh BN, Radhakrishnan V (1989) Investigations on laser dressing of grinding wheels—part ii: grinding performance of a laser dressed aluminum oxide wheel. J Eng Ind 111:253–261

    Article  Google Scholar 

  21. Tamaki J, Kondoh K, Iyama T (1999) Electrocontact discharge dressing of metal-bonded diamond grinding wheel utilizing a hybrid electrode. J Jpn Soc Precis Eng 65:1628–1632

    Article  Google Scholar 

  22. Xie J, Tamaki J (2006) In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing. J Mater Process Technol 180:83–90

    Article  Google Scholar 

  23. Tönshoff HK, Friemuth T (2000) In-process dressing of fine diamond wheels for tool grinding. Precis Eng 24:58–61

    Article  Google Scholar 

  24. Wegener K, Hoffmeister HW, Karpuschewski B, Kuster F, Hahmann WC, Rabiey M (2011) Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol 60:757–777

    Article  Google Scholar 

  25. Xie J, Xie HF, Luo MJ, Tan TW, Li P (2012) Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding. Int J Mach Tools Manuf 60:44–51

    Article  Google Scholar 

  26. Brinksmeier E, Riemer O, Gessenharter A, Autschbach L (2004) Polishing of structured molds. CIRP Ann 53:247–250

    Article  Google Scholar 

  27. Brinksmeier E, Riemer O, Gessenharter A (2006) Finishing of structured surfaces by abrasive polishing. Precis Eng 30:325–336

    Article  Google Scholar 

  28. Riemer O (2008) A review on machining of micro-structured optical molds. Key Eng Mater 364:13–18

    Google Scholar 

  29. Suzuki H, Okada M, Yamagata Y, Morita S, Higuchi T (2012) Precision grinding of structured ceramic molds by diamond wheel trued with alloy metal. CIRP Ann 61:283–286

    Article  Google Scholar 

  30. Guo J, Liu K, Wang Z, Wang ZF, Tnay GL (2017) Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding of microfluidic chips. Tribol Int 114:306–314

    Article  Google Scholar 

  31. Wu JZ, Yin SH, Xing BJ, Zou YH (2019) Effect of magnetic pole on finishing characteristics in low-frequency alternating magnetic field for micro-groove surface. Int J Adv Manuf Technol 104:4745–4755

    Article  Google Scholar 

  32. Kim W, Lee S, Min B (2004) Surface finishing and evaluation of three-dimensional silicon microchannel using magnetorheological fluid. J Manuf Sci Eng 126:772–778

    Article  Google Scholar 

  33. Wang Y, Wu Y, Nomura M (2016) Feasibility study on surface finishing of miniature V-grooves with magnetic compound fluid slurry. Precis Eng 45:67–78

    Article  Google Scholar 

  34. Suzuki H, Hamada S, Okino T, Kondo M, Yamagata Y, Higuchi T (2010) Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing. CIRP Ann 59:347–350

    Article  Google Scholar 

  35. Zhao Q, Sun Z, Guo B (2016) Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC. Int J Mach Tools Manuf 103:28–39

    Article  Google Scholar 

  36. Guo J, Morita S, Hara M, Yamagata Y, Higuchi T (2012) Ultra-precision finishing of micro-aspheric mold using a magnetostrictive vibrating polisher. CIRP Ann 61:371–374

    Article  Google Scholar 

  37. Chen FJ, Hao SM, Miao XL, Yin SH, Huang S (2018) Numerical and experimental study on low-pressure abrasive flow polishing of rectangular microgroove. Powder Technol 327:215–222

    Article  Google Scholar 

  38. Wang CJ, Zhang ZL, Cheung CF, Luo W, Loh YM, Lu YJ, Kong LB, Wang SX (2022) Maskless fluid jet polishing of optical structured surfaces. Precis Eng 73:270–283

    Google Scholar 

Download references

Acknowledgements

The work described in this chapter was supported by the National Natural Science Foundation of China (Grant No. 51805334), the International Science and Technology Cooperation Project of Shenzhen City (Grant No. GJHZ20190822091805371), and the Science and Technology Planning Project of Guangdong Province (Grant No. 2017A010102003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, Y., Huang, Y., Ouyang, J. (2023). Introduction to Precision Grinding and Injection Molding Micro/Nano Structures. In: Zhang, G., Xu, B., Lu, Y., To, S. (eds) Fabrication of Micro/Nano Structures via Precision Machining. Springer, Singapore. https://doi.org/10.1007/978-981-99-1338-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1338-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1337-4

  • Online ISBN: 978-981-99-1338-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics