Skip to main content

Abstract

The use of conventional healthy animals (CHAs) has long been a mainstay of nonclinical safety testing as well as evaluation of efficacy of new chemical entities (NCEs) in the discovery setting. However, the potential value of directed animal models of human disease (AMDs) has increasingly been of value in evaluation of both disciplines. While more frequently employed in the evaluation of efficacy (discovery phase), there has been increasing interest in utilizing AMDs in investigation of the safety (development phase), particularly in the development of targeted NCEs that may not be appropriate for testing in CHAs. While it is accepted that no animal model (neither CHA nor AMD) will accurately predict all risks (or potential benefits) of an NCE, careful selection of the model with an understanding of the pros and cons of each model will optimize the results of investigations. This chapter will outline some of the major organ systems, human diseases, and associated AMDs along with considerations for their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sura R, Hutt J, Morgan S (2021) Opinion on the use of animal models in nonclinical safety assessment: pros and cons. Toxicol Pathol 49(5):990–995

    Article  PubMed  Google Scholar 

  2. Morgan SJ, Elangbam CS, Berens S, Janovitz E, Vitsky A et al (2013) Use of animal models of human disease for nonclinical safety assessment of novel pharmaceuticals. Toxicol Pathol 41:508–518

    Article  PubMed  Google Scholar 

  3. Olson H, Betton G, Robinson D, Thomas K, Monro A et al (2000) Condordance of the toxicity or pharmaceuticals in humans and animals. Regul Toxicol Pharmacol 32:56–67

    Article  CAS  PubMed  Google Scholar 

  4. Stevens JL, Baker TK (2009) The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov Today 14:162–167

    Article  PubMed  Google Scholar 

  5. Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J (2020) Animal models for liver disease - a practical approach for translational research. J Hepatol 73(2):423–440

    Article  PubMed  Google Scholar 

  6. Malečková A, Tonar Z, Mik P, Michalová K, Liška V et al (2019) Animal models of liver diseases and their application in experimental surgery. Rozhl Chir 98(3):100–109

    PubMed  Google Scholar 

  7. Brandon-Warner EW, Schrum L, Schmidt CM, McKillop IH (2012) Rodent models of alcoholic liver disease: of mice and men. Alcohol 46(8):715–724

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C et al (2013) Animal models of chronic liver diseases. Am J Physiol Gastrointest 304(5):G449–G468

    Article  CAS  Google Scholar 

  9. Zhang P, Wang W, Mao M, Gao R, Shi W et al (2021) Similarities and differences: a comparative review of the molecular mechanisms and effectors of NAFLD and AFLD. Front Physiol 12:710285

    Article  PubMed  PubMed Central  Google Scholar 

  10. Van Herck MA, Vonghia L, Francque SM (2017) Animal models of nonalcoholic fatty liver disease-a starter’s guide. Nutrients 9(10):1072

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alharshawi K, Aloman C (2021) Murine models of alcohol consumption: imperfect but still potential source of novel biomarkers and therapeutic drug discovery for alcoholic liver disease. J Cell Immunol 3(3):177–181

    PubMed  PubMed Central  Google Scholar 

  12. Delire B, Stärkel P, Leclercq I (2015) Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J Clin Transl Hepatol 3(1):53–66

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamas-Paz A, Hao F, Nelson LJ, Vázquez MT, Canals S et al (2018) Alcoholic liver disease: utility of animal models. World J Gastroenterol 24(45):5063–5075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bao YL, Wang L, Pan HT, Zhang TR, Chen YH et al (2021) Animal and organoid models of liver fibrosis. Front Physiol 12:666138

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laverty HG, Benson EJ, Cartwright EJ, Cross MJ, Garland C et al (2011) How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br J Pharmacol 163:675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sibille M, Dergar N, Janin A, Kirkesseli S, Durand DV (1998) Adverse events in phase-I studies: a report in 1015 healthy volunteers. Eur J Clin Pharmacol 54:13–20

    Article  CAS  PubMed  Google Scholar 

  17. Siramshetty VB, Nickel J, Omieczynski C, Gohlke BO, Drwal MN et al (2016) Withdrawn–a resource for withdrawn and discontinued drugs. Nucleic Acids Res 44:D1080–D1086

    Article  CAS  PubMed  Google Scholar 

  18. Mushenkova NV, Summerhill VI, Silaeva YY, Deykin AV, Orekhob AN (2019) Modeling of atherosclerosis in genetically modified animals. Am J Transl Res 11(8):4614–4633

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bentzon JF, Falk E (2010) Atherosclerotic lesions in mouse and man: is it the same disease? Curr Opin Lipidol 21(5):434–440

    Article  CAS  PubMed  Google Scholar 

  21. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A et al (1994) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E deficient mice created by homologous recombindation in ES cells. Cell 71:343–353

    Article  Google Scholar 

  22. Shen X, Bornfeldt KE (2007) Mouse models for studies of cardiovascular complications of type 1 diabetes. Ann N Y Acad Sci 1003:202–217

    Article  Google Scholar 

  23. Weinreb DB, Aguinaldo JGS, Feig JE, Fisher EA et al (2007) Non-invasive MRI of mouse models of atherosclerosis. NMR Biomed 20(3):256–264

    Article  PubMed  Google Scholar 

  24. Largo R, Sanchez-Pernaute O, Marcos ME, Moreno-Rubio J (2008) Chronic arthritis aggravates vascular lesions in rabbits with atherosclerosis: a novel model of atherosclerosis associated with chronic inflammation. J Am Coll Cardiol 32(7):2057–2064

    Google Scholar 

  25. Shimizu T, Nakai K, Morimoto Y, Ishihara M (2009) Simple rabbit model of vulnerable atherosclerotic plaque. Neurol Med Chir 49(8):327–332

    Article  Google Scholar 

  26. Gerrity RG, Natarajan R, Nadler JL, Kimsey T (2009) Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50(7):1654–1665

    Article  Google Scholar 

  27. Anidjar S, Salzmann JL, Gentric P, Lagneau P, Camilleri JP et al (1990) Elastase-induced experimental aneurysms in rats. Circulation 82(3):973–981

    Article  CAS  PubMed  Google Scholar 

  28. Lizarbe TR, Tarin C, Gomez M, Lavin B, Aracil E et al (2009) Nitric oxide induces the progression of abdominal aortic aneurysms through the matrix metalloproteinase induced EMMPRIN. Am J Pathol 175(4):1421–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brophy CM, Tilson JE, Braverman IM, Tilson MD (1988) Age of onset, pattern of distribution and histology of aneurysm development in a genetically predisposed mouse model. J Vasc Surg 8(1):45–48

    Article  CAS  PubMed  Google Scholar 

  30. Molacek J, Treska V, Kober J, Certik B, Skalicky T et al (2008) Optimization of the model of abdominal aortic aneurysm – experiment in an animal model. J Vasc Res 46(1):1–5

    Article  PubMed  Google Scholar 

  31. Pfeffer MA, Pfeffer M, Fisbein MC (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44(4):503–512

    Article  CAS  PubMed  Google Scholar 

  32. Michael LH, Entman ML, Harley CJ, Younker KA, Zhu J et al (1995) Myocardial ischemia and reperfusion: a murine model. Am J Phys 269(6):H2147–H2154

    CAS  Google Scholar 

  33. Zbinden G, Bagdon RE (1963) Isoproterenol-induced heart necrosis, an experimental model for the study of angina pectoris and myocardial infarct. Rev Can Biol 22:257–263

    CAS  PubMed  Google Scholar 

  34. Suzuki Y, Lyons K, Yeung AC, Ikeno F (2008) In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct/area at risk. Catheter Cardiovasc Interv 71(1):100–107

    Article  PubMed  Google Scholar 

  35. Gonzalez GE, Seropian M, Krieger PJ, Verrilli L et al (2009) Effect of early versus late AT receptor blockade with losartan on postmyocardial infarction ventricular remodeling in rabbits. Am J Phys 297(1):H375–H386

    CAS  Google Scholar 

  36. Shiomi M, Ito T, Yamada S, Kawashima S, Fan J (2003) Development of an animal model for spontaneous myocardial infarction (WHHLM1 rabbit). Arterioscler Thromb Vasc Biol 23(7):1239–1244

    Article  CAS  PubMed  Google Scholar 

  37. McGonigle P (2014) Animal models of CNS disorders. Biochem Pharmacol 1:140–149

    Article  Google Scholar 

  38. Chesselet MF, Carmichael ST (2012) Animal models of neurological disorders. Neurotherapeutics 9(2):241–244

    Article  PubMed  PubMed Central  Google Scholar 

  39. Morgan SJ, Elangbam CS (2016) Animal models of disease for future toxicity predictions. In: Olaharsi AJ, Jeffy BD (eds) Drug discovery toxicology: from target assessment to translational biomarkers. Wiley, Hoboken

    Google Scholar 

  40. Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21(10):1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leal PC, Lins LC, de Gois AM, Marchioro M, Santos JR (2016) Commentary: evaluation of models of Parkinson’s disease. Front Neurosci 10:283

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cepeda C, Cummings DM, André VM, Holley SM, Levine MS (2010) Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro 2(2):103–114

    Article  CAS  Google Scholar 

  43. Ribeiro FM, Camargos ERD, DeSouza LCD, Teixeira AL (2013) Animal models of neurodegenerative diseases. Rev Bras Psiquiatr 35(Suppl 2):S82

    Article  PubMed  Google Scholar 

  44. Reiss LK, Uhlig U, Uhlig S (2012) Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol 91(6-7):590–601

    Article  CAS  PubMed  Google Scholar 

  45. Clark M, Steger-Hartmann T (2018) A big data approach to the concordance of the toxicity of pharmaceuticals in animals and humans. Regul Toxicol Pharmacol 96:94–105

    Article  CAS  PubMed  Google Scholar 

  46. Monticello TM (2015) Drug development and nonclinical to clinical translational databases: past and current efforts. Toxicol Pathol 43(1):57–61

    Article  PubMed  Google Scholar 

  47. Guengerich FP (2011) Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab Pharmacokinet 26(1):3–14

    Article  CAS  PubMed  Google Scholar 

  48. Sanger GJ, Holbrook JD, Andrews PL (2011) The translational value of rodent gastrointestinal functions: a cautionary tale. Trends Pharmacol Sci 32(7):402–409

    Article  CAS  PubMed  Google Scholar 

  49. Kolios G (2016) Animal models of inflammatory bowel disease: how useful are they really? Curr Opin Gastroenterol 32(4):251–257

    Article  CAS  PubMed  Google Scholar 

  50. Mizoguchi A, Takeuchi T, Himuro H, Okada T, Mizoguchi E (2016 Jan) Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol 238(2):205–219. https://doi.org/10.1002/path.4640

    Article  PubMed  Google Scholar 

  51. Eichele DD, Kharbanda KK (2017) Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 23(33):6016–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baydi Z, Limami Y, Khalki L, Zaid N, Naya A et al (2021) An update of research animal models of inflammatory bowel disease. Sci World J 2021:7479540

    Article  Google Scholar 

  53. Kiesler P, Fuss IJ, Strober W (2015) Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol 1(2):154–170

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liao CM, Zimmer MI, Wang CR (2013) The functions of type I and type II natural killer T cells in inflammatory bowel diseases. Inflamm Bowel Dis 19(6):1330–1338

    Article  PubMed  Google Scholar 

  55. Ishikawa D, Okazawa A, Corridoni D, Jia LG, Wang XM et al (2013) Tregs are dysfunctional in vivo in a spontaneous murine model of Crohn’s disease. Mucosal Immunol 6(2):267–275

    Article  CAS  PubMed  Google Scholar 

  56. Lanas A, Chan FKL (2017) Peptic ulcer disease. Lancet 390(10094):613–624

    Article  PubMed  Google Scholar 

  57. Groenen MJ, Kuipers EJ, Hansen BE, Ouwendijk RJ (2009) Incidence of duodenal ulcers and gastric ulcers in a Western population: back to where it started. Can J Gastroenterol 23(9):604–608

    Article  PubMed  PubMed Central  Google Scholar 

  58. Musumba C, Jorgensen A, Sutton L, Van Eker D, Moorcroft J et al (2012) The relative contribution of NSAIDs and Helicobacter pylori to the aetiology of endoscopically-diagnosed peptic ulcer disease: observations from a tertiary referral hospital in the UK between 2005 and 2010. Aliment Pharmacol Ther 36(1):48–56

    Article  CAS  PubMed  Google Scholar 

  59. Burkitt MD, Duckworth CA, Williams JM, Pritchard DM (2017) Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech 10(2):89–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ansari S, Yamaoka Y (2022) Animal models and Helicobacter pylori infection. J Clin Med 11(11):3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adinortey MB, Ansah C, Galyuon I, Nyarko A (2013) In vivo models used for evaluation of potential antigastroduodenal ulcer agents. Ulcers 2013:796405. https://doi.org/10.1155/2013/796405

    Article  CAS  Google Scholar 

  62. Mishra AP, Bajpai A, Chandra S (2019) A comprehensive review on the screening models for the pharmacological assessment of antiulcer drugs. Curr Clin Pharmacol 14(3):175–196

    Article  PubMed  Google Scholar 

  63. Ghorani V, Boskabady MH, Khazdair MR, Kianmeher M (2017) Experimental animal models for COPD: a methodological review. Tob Induc Dis 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tanner L, Single AB (2020) Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: translating pre-clinical data into clinical relevance. J Innate Immun 12(3):203–225

    Article  PubMed  Google Scholar 

  65. Serban KA, Petrache I (2018) Mouse Models of COPD. Methods Mol Biol 1809:379–394

    Article  CAS  PubMed  Google Scholar 

  66. Brusselle GG, Bracke KR, Maes T, D’hulst AI, Moerloose KB et al (2006) Murine models of COPD. Pulm Pharmacol Ther 19(3):155–165

    Article  CAS  PubMed  Google Scholar 

  67. Fujita M, Nakanishi Y (2007) The pathogenesis of COPD: lessons learned from in vivo animal models. Med Sci Monit 13(2):19–24

    Google Scholar 

  68. Gu BH, Sprouse ML, Madison MC, Hong MJ, Yuan X et al (2019) A novel animal model of emphysema induced by anti-Elastin autoimmunity. J Immunol 203(2):349–359

    Article  CAS  PubMed  Google Scholar 

  69. Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P (2017) Animal models of asthma: utility and limitations. J Asthma Allergy 10:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shin YS, Takeda K, Gelfand EW (2009) Understanding asthma using animal models. Allergy, Asthma Immunol Res 1(1):10–18

    Article  CAS  PubMed  Google Scholar 

  71. Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Allergy 37(7):973–988

    Article  CAS  PubMed  Google Scholar 

  72. Ricciardolo FL, Nijkamp F, De Rose V, Folkerts G (2008) The guinea pig as an animal model for asthma. Curr Drug Targets 9(6):452–465

    Article  CAS  PubMed  Google Scholar 

  73. Sagar S, Akbarshahi H, Uller L (2015) Translational value of animal models of asthma: challenges and promises. Eur J Phamacol 15(759):272–277

    Article  Google Scholar 

  74. Mokrá D (2020) Acute lung injury - from pathophysiology to treatment. Physiol Res 69(Suppl 3):S353–S366

    PubMed  PubMed Central  Google Scholar 

  75. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA et al (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP et al (2022) Update on the features and measurements of experimental acute lung injury in animals: an official American Thoracic Society workshop report. Am J Respir Cell Mol Biol 66(2):e1–e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(3):L379–L399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC (2015) Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediat Inflamm 2015:260465

    Article  Google Scholar 

  79. Gramatté J, Pietzsch J, Bergmann R, Richter T (2018) Causative treatment of acid aspiration induced acute lung injury - recent trends from animal experiments and critical perspective. Clin Hemorheol Microcirc 69(1-2):187–195

    Article  PubMed  Google Scholar 

  80. Yehya N (2019) Lessons learned in acute respiratory distress syndrome from the animal laboratory. Ann Transl Med 7(19):503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S (2021) Ventilator-induced lung-injury in mouse models: is there a trap? Lab Anim Res 37(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  82. Amarelle L, Quintela L, Hurtado J, Malacrida L (2021) Hyperoxia and lungs: what we have learned from animal models. Front Med 8:606–678

    Article  Google Scholar 

  83. Lv R, Zheng J, Ye Z, Sun X, Tao H et al (2014) Advances in the therapy of hyperoxia-induced lung injury: findings from animal models. Undersea Hyperb Med 41(3):183–202

    PubMed  Google Scholar 

  84. Fard N, Saffari A, Emami G, Hofer S, Kauczor HU et al (2014) Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models. J Surg Res 189(2):274–284

    Article  PubMed  Google Scholar 

  85. Mishra SK, Choudhury S (2018) Experimental protocol for cecal ligation and puncture model of polymicrobial sepsis and assessment of vascular functions in mice. Methods Mol Biol 1717:161–187

    Article  CAS  PubMed  Google Scholar 

  86. Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 122(8):2756–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 378(19):1811–1823

    Article  CAS  PubMed  Google Scholar 

  88. Nureki SI, Tomer Y, Venosa A, Katzen J, Russo SJ et al (2018) Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest 128(9):4008–4024

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yasutomo K (2021) Genetics and animal models of familial pulmonary fibrosis. Int Immunol 33(12):653–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ et al (2017) Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med 28(4):118

    Article  Google Scholar 

  91. O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C et al (2019) Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 199(9):1127–1138

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li S, Shi J, Tang H (2022) Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biol Toxicol 38(5):699–723

    Article  CAS  PubMed  Google Scholar 

  93. Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M et al (2017) ATS assembly on respiratory cell and molecular biology. An official American Thoracic Society Workshop Report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol 56(5):667–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miles T, Hoyne GF, Knight DA, Fear MW, Mutsaers SE et al (2020) The contribution of animal models to understanding the role of the immune system in human idiopathic pulmonary fibrosis. Clin Transl Immunol 9(7):e1153

    Article  Google Scholar 

  95. Habiel DM, Espindola MS, Coelho AL, Hogaboam CM (2018) Modeling idiopathic pulmonary fibrosis in humanized severe combined immunodeficient mice. Am J Pathol 188(4):891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pereira CV, Nadanaciva S, Oliveira PJ, Will Y (2012) The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol 8:219–237

    Article  CAS  PubMed  Google Scholar 

  97. Gobe G, Willgoss D, Hogg N, Schoch E, Endre Z (1999) Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury. Kidney Int 56:1299–1304

    Article  CAS  PubMed  Google Scholar 

  98. Lu X, Li N, Shushakova N, Schmitt R, Menne J et al (2012) C57BL/y and 129sv mice: genetic differences to renal ischemia-reperfusion. J Nephrol 5:738–743

    Article  Google Scholar 

  99. Kusaka J, Koga H, Hagiwara S, Hasegawa A, Kudo K et al (2012) Age-dependent responses to renal ischemia-reperfusion injury. J Surg Res 172:153–158

    Article  CAS  PubMed  Google Scholar 

  100. King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166:877–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 50:537–546

    CAS  PubMed  Google Scholar 

  102. Yang HC, Zuo Y, Fogo AB (2010) Models of chronic kidney disease. Drug Discov Today Dis Model 7:13–19

    Article  CAS  Google Scholar 

  103. Beck AP, Meyerholz DK (2020) Evolving challenges to model human diseases for translational research. Cell Tissue Res 380(2):305–311

    Article  PubMed  Google Scholar 

  104. Tomohiro M, Okabe T, Kimura Y, Kinoshita K, Maeda M et al (2019) Toxicologic pathology forum: current status on the use of animal models of human disease in the pharmaceutical industry in japan in nonclinical safety assessment-opinion paper. Toxicol Pathol 47(2):108–120

    Article  PubMed  Google Scholar 

  105. Butler LD, Guzzie-Peck P, Hartke J, Bogdanffy MS, Will Y (2017) Current nonclinical testing paradigms in support of safe clinical trials: an IQ consortium DruSafe perspective. Regul Toxicol Pharmacol 87(Suppl 3):S1–S15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry J. Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morgan, S.J., Hutt, J.A., Sura, R. (2023). Animal Models for the Study of Human Disease. In: Jagadeesh, G., Balakumar, P., Senatore, F. (eds) The Quintessence of Basic and Clinical Research and Scientific Publishing. Springer, Singapore. https://doi.org/10.1007/978-981-99-1284-1_15

Download citation

Publish with us

Policies and ethics