Skip to main content
Log in

Technologies applicable to the removal of heavy metals from landfill leachate

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This article presents a review of the main physical, chemical, electrochemical, and biological technologies used for treating heavy metals in the wastewater of industrial processes and in synthetic aqueous solutions which could be applied to leachate from landfills. This paper outlines the generalities, operating principles, and modifications made to the technologies described. It discusses and assesses which of these have better removal rates and higher levels of efficiency in minimizing the heavy metal concentrations contained in leachates, such as mercury, chromium, lead, nickel, and copper among others. The first part of the document presents the so-called conventional technologies, such as chemical, physical, and electrochemical treatment. These have been used to treat different wastewater, especially industrial waste, operating adequately from the technical topic, but with high costs and the secondary products’ production. The second part exposes biological treatments tend to be most widely used due to their versatility, effectiveness, and low cost, when compared with traditional technologies. It is important to note that there is no single treatment and that each of the technologies reviewed has different heavy metal decontamination rates. All technologies search to reduce concentrations of heavy metals to values that are safe for the natural resources where they are discharged or disposed, thereby complying with the regulatory limits regulated in each of the regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • A D, Oka M, Fujii Y et al (2017) Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci Total Environ 584–585:742–750. https://doi.org/10.1016/J.SCITOTENV.2017.01.112

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257. https://doi.org/10.1016/j.biortech.2005.12.006

    Article  CAS  Google Scholar 

  • Al-Anbari RH, Albaidani J, Alfatlawi SM, Al-Hamdani TA (2008) Removal of heavy metals from industrial water using electro-coagulation technique. In: Twelft International Water Technology Conference

  • Aldrich C, Feng D (2000) Removal of heavy metals from wastewater effluents by biosorptive flotation. Miner Eng 13:1129–1138

    Article  CAS  Google Scholar 

  • Al-Qodah Z (2006) Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 196:164–176. https://doi.org/10.1016/j.desal.2005.12.012

    Article  CAS  Google Scholar 

  • Al-Qodah Z, Mubarak MS (2008) Copper adsorption on chitosan-derived Schiff bases AU - Zalloum, Hiba M. J Macromol Sci A 46:46–57. https://doi.org/10.1080/10601320802515225

    Article  CAS  Google Scholar 

  • Al-Shannag M, Al-Qodah Z, Bani-Melhem K et al (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J 260:749–756

    Article  CAS  Google Scholar 

  • Amaringo Villa FA (2015) Estudio de la adsorción de una mezcla binaria de colorantes de interés industrial sobre cascarilla de arroz. Universidad Nacional de Colombia Sede Medellín

  • Anitha T, Kumar PS, Kumar KS et al (2015a) Adsorptive removal of Pb(II) ions from polluted water by newly synthesized chitosan–polyacrylonitrile blend: equilibrium, kinetic, mechanism and thermodynamic approach. Process Saf Environ Prot 98:187–197. https://doi.org/10.1016/j.psep.2015.07.012

    Article  CAS  Google Scholar 

  • Anitha T, Senthil Kumar P, Sathish Kumar K (2015b) Binding of Zn(II) ions to chitosan–PVA blend in aqueous environment: adsorption kinetics and equilibrium studies. Environ Prog Sustain Energy 34:15–22. https://doi.org/10.1002/ep.11943

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  • Basha CA, Ramanathan K, Rajkumar R, Mahalakshmi M, Kumar PS (2008) Management of chromium plating rinsewater using electrochemical ion exchange. Ind Eng Chem Res 47:2279–2286. https://doi.org/10.1021/ie070163x

    Article  CAS  Google Scholar 

  • Bavandpour F, Zou Y, He Y, Saeed T, Sun Y, Sun G (2018) Removal of dissolved metals in wetland columns filled with shell grits and plant biomass. Chem Eng J 331:234–241. https://doi.org/10.1016/J.CEJ.2017.08.112

    Article  CAS  Google Scholar 

  • Březinová T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99. https://doi.org/10.1016/j.ecoleng.2015.04.008

    Article  Google Scholar 

  • Bustamante-Alcántara E (2011) Adsorción de metales pesados en resiudos de café modificados químicamente. Universidad Autónoma de Nuevo León

  • Cárdenas Sánchez AC (2012) Evaluación del desempeño de humedales contruidos con plantas nativas tropicales para el tratamiento de lixiviados de rellenos sanitarios. Universidad de Sevilla

  • Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

    Article  CAS  Google Scholar 

  • Chao H-P, Chang C-C, Nieva A (2014) Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J Ind Eng Chem 20:3408–3414

    Article  CAS  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325. https://doi.org/10.1016/S0925-8574(01)00091-X

    Article  Google Scholar 

  • Chitpong N, Husson SM (2017) High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol 179:94–103. https://doi.org/10.1016/j.seppur.2017.02.009

    Article  CAS  Google Scholar 

  • Cortés Sandoval AE (2014) Evaluación del desempeño de humedales construidos subsuperficial de flujo horizontal sembrados con especies nativas tropicales para la eliminación de Cr (VI) y Cd (II) de lixiviado de relleno sanitario

  • Cubides Guerrero P, Ramírez Franco JH (2014) Adsorción de Cr VI sobre residuos de café. Rev Mutis 4:18–25

    Article  Google Scholar 

  • Dávila-Guzmán NE, de Jesús Cerino-Córdova F, Soto-Regalado E et al (2013) Copper biosorption by spent coffee ground: equilibrium, kinetics, and mechanism. CLEAN – Soil, Air, Water 41:557–564. https://doi.org/10.1002/clen.201200109

    Article  CAS  Google Scholar 

  • Arroyave MP del (2004) La lenteja de agua (Lemna minor l.): una planta acuática promisoria. Rev. EIA 33–38

  • Delgadillo-López AE, González-Ramírez CA, Prieto-García F et al (2011) Fitorremediación una alternativa para eliminar la contaminación. Trop Subtrop Agroecosyst 14:597–612

    Google Scholar 

  • El Bestawy E, Helmy S, Hussien H et al (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192

    Article  CAS  Google Scholar 

  • Elabbas S, Ouazzani N, Mandi L, Berrekhis F, Perdicakis M, Pontvianne S, Pons MN, Lapicque F, Leclerc JP (2016) Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode. J Hazard Mater 319:69–77. https://doi.org/10.1016/j.jhazmat.2015.12.067

    Article  CAS  Google Scholar 

  • Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90:1663–1679. https://doi.org/10.1016/J.JENVMAN.2008.12.011

    Article  CAS  Google Scholar 

  • Encinas Romero MA, Núñez Rodríguez LA, Gómez Álvarez A, del Munive G CT (2015) Eliminación de cromo de efluentes ácidos, mediante adsorción con wollastonita natural. Epistemus 18:18–22

    Google Scholar 

  • Fan H-L, Zhou S-F, Jiao W-Z et al (2017) Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr Polym 174:1192–1200. https://doi.org/10.1016/j.carbpol.2017.07.050

    Article  CAS  Google Scholar 

  • Flores-Cano JV, Leyva-Ramos R, Padilla-Ortega E, Mendoza-Barron J (2013) Adsorption of heavy metals on diatomite: mechanism and effect of operating variables. Adsorpt Sci Technol 31:275–291

    Article  CAS  Google Scholar 

  • Flórez Orjuela Y, Cótes Cuadro A (2006) Bioabsorción de metales pesados por Salvinia natans de los lixiviados del relleno sanitario Combeima Ibagué

  • Gao J, Zhang J, Ma N et al (2015) Cadmium removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands. Ecol Eng 84:443–450. https://doi.org/10.1016/j.ecoleng.2015.07.024

    Article  Google Scholar 

  • Gerard N, Santhana Krishnan R, Ponnusamy SK et al (2016) Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Process Saf Environ Prot 104:185–195. https://doi.org/10.1016/j.psep.2016.09.006

    Article  CAS  Google Scholar 

  • Ghosh P, Das M, Thakur I (2014) Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1. Environ Sci Pollut Res 21:8084–8094. https://doi.org/10.1007/s11356-014-2802-2

    Article  CAS  Google Scholar 

  • Gill LW, de Pamela A, Johnston et al (2017) Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Sci Total Environ 601–602:32–44. https://doi.org/10.1016/J.SCITOTENV.2017.05.182

    Article  Google Scholar 

  • Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396. https://doi.org/10.1016/J.BIORTECH.2016.06.096

    Article  CAS  Google Scholar 

  • González-García P (2017) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energ Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  CAS  Google Scholar 

  • Grisey E, Laffray X, Contoz O, Cavalli E, Mudry J, Aleya L (2012) The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Pollut 223:1723–1741

    Article  CAS  Google Scholar 

  • Gunasundari E, Senthil Kumar P (2017) Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). J Ind Eng Chem 56:129–144. https://doi.org/10.1016/j.jiec.2017.07.005

    Article  CAS  Google Scholar 

  • Gutiérrez-Gutiérrez SC, Rosano-Ortega G, Vega-Lebrún C, et al (2013) Ag, Hg and Cr precipitation for recycling derived of hazardous liquid waste

  • Harinath Y, Reddy DHK, Sharma LS, Seshaiah K (2017) Development of hyperbranched polymer encapsulated magnetic adsorbent (Fe3O4@SiO2–NH2-PAA) and its application for decontamination of heavy metal ions. J Environ Chem Eng 5:4994–5001. https://doi.org/10.1016/j.jece.2017.09.031

    Article  CAS  Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873. https://doi.org/10.1016/j.jhazmat.2008.07.041

    Article  CAS  Google Scholar 

  • He W, Zhang Y, Tian R et al (2013) Modeling the purification effects of the constructed Sphagnum wetland on phosphorus and heavy metals in Dajiuhu Wetland Reserve, China. Ecol Model 252:23–31. https://doi.org/10.1016/j.ecolmodel.2012.09.025

    Article  CAS  Google Scholar 

  • Huang H, Cao L, Wan Y, Zhang R, Wang W (2012) Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl Microbiol Biotechnol 96:829–840. https://doi.org/10.1007/s00253-011-3846-6

    Article  CAS  Google Scholar 

  • Izquierdo M (2010) Eliminación de metales pesados en aguas mediante bioadsorción. Evaluación de materiales y modelación del proceso. Dep d’Enginyeria Química, Univ València 22–37

  • Jerez Chaverri JA (2013) Remoción de metales pesados en lixiviados mediante fitorremediación

  • Kaveeshwar AR, Ponnusamy SK, Revellame ED et al (2018) Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: adsorption kinetics, isotherm and thermodynamic studies. Process Saf Environ Prot 114:107–122. https://doi.org/10.1016/j.psep.2017.12.007

    Article  CAS  Google Scholar 

  • Kiely G (2007) Environmental engineering. Tata McGraw-Hill Education

  • Kim BR, Gaines WA, Szafranski MJ, Bernath EF, Miles AM (2002) Removal of heavy metals from automotive wastewater by sulfide precipitation. J Environ Eng 128:612–623

    Article  CAS  Google Scholar 

  • Kim SU, Cheong YH, Seo DC, Hur JS, Heo JS, Cho JS (2007) Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Sci Technol 55:105–111

    Article  CAS  Google Scholar 

  • Kiruba UP, Kumar PS, Prabhakaran C, Aditya V (2014) Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system. J Taiwan Inst Chem Eng 45:2957–2968. https://doi.org/10.1016/j.jtice.2014.08.016

    Article  CAS  Google Scholar 

  • Kızılkaya B, Türker G, Akgül R, Doğan F (2012) Comparative study of biosorption of heavy metals using living green algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: equilibrium and kinetics. J Dispers Sci Technol 33:410–419. https://doi.org/10.1080/01932691.2011.567181

    Article  CAS  Google Scholar 

  • Kumar PS, Ramalingam S, Sathyaselvabala V, Kirupha SD, Murugesan A, Sivanesan S (2012) Removal of cadmium(II) from aqueous solution by agricultural waste cashew nut shell. Korean J Chem Eng 29:756–768. https://doi.org/10.1007/s11814-011-0259-2

    Article  CAS  Google Scholar 

  • Largitte L, Brudey T, Tant T, Dumesnil PC, Lodewyckx P (2016) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater 219:265–275

    Article  CAS  Google Scholar 

  • Leung JYS, Cai Q, Tam NFY (2016) Comparing subsurface flow constructed wetlands with mangrove plants and freshwater wetland plants for removing nutrients and toxic pollutants. Ecol Eng 95:129–137. https://doi.org/10.1016/j.ecoleng.2016.06.016

    Article  Google Scholar 

  • Li H, Wei M, Min W et al (2016) Removal of heavy metal ions in aqueous solution by exopolysaccharides from Athelia rolfsii. Biocatal Agric Biotechnol 6:28–32. https://doi.org/10.1016/j.bcab.2016.01.013

    Article  Google Scholar 

  • Liu T, Han X, Wang Y, Yan L, du B, Wei Q, Wei D (2017) Magnetic chitosan/anaerobic granular sludge composite: synthesis, characterization and application in heavy metal ions removal. J Colloid Interface Sci 508:405–414. https://doi.org/10.1016/J.JCIS.2017.08.067

    Article  CAS  Google Scholar 

  • López Trujillo V, Salgado Mendoza P (2004) Estudio de la calidad del lixiviado del relleno sanitario La Esmeralda y su respuesta bajo tratamiento en filtro anaerobio piloto de fllujo ascendente

  • Ma N, Wang W, Gao J, Chen J (2017) Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season. Ecol Eng 109:48–56. https://doi.org/10.1016/j.ecoleng.2017.09.008

    Article  Google Scholar 

  • Martínez IDM, Silva GG, Hurtado SHV (2013) Removal of nickel and cod present in wastewaters from automotive industry by electrocoagulation. Rev EIA 10:13–21

    Google Scholar 

  • Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, al Syouf MQ (2015) The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J Environ Chem Eng 3:775–784

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152. https://doi.org/10.1080/07388550500248571

    Article  CAS  Google Scholar 

  • Meng Q, Chen H, Lin J, Lin Z, Sun J (2017) Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. J Environ Sci 56:254–262. https://doi.org/10.1016/j.jes.2016.10.010

    Article  Google Scholar 

  • Minamisawa M, Nakajima S, Minamisawa H, Yoshida S, Takai N (2002) Removal of copper(II) and cadmium(II) in water by use of roasted coffee beans. Nippon Kagaku Kaishi 2002:459–461. https://doi.org/10.1246/nikkashi.2002.459

    Article  Google Scholar 

  • Minamisawa M, Minamisawa H, Yoshida S, Takai N (2004) Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem 52:5606–5611. https://doi.org/10.1021/jf0496402

    Article  CAS  Google Scholar 

  • Ministry of Environment and Sustainable Development (2012) Heavy metals concentrations at Colombia landfills

  • Mohammed A, Babatunde AO (2017) Modelling heavy metals transformation in vertical flow constructed wetlands. Ecol Model 354:62–71. https://doi.org/10.1016/J.ECOLMODEL.2017.03.012

    Article  CAS  Google Scholar 

  • Mosquera-Beltrán Y, Lara-Borrero J (2012) Tratamiento de lixiviados mediante humedales artificiales: revisión del estado del arte. Reflexión Otro¿ Cuál? _ 7:73–99

  • Moulay S, Bensacia N, Garin F et al (2014) Synthesis of polyacrylamide-bound hydroquinone via a homolytic pathway: application to the removal of heavy metals. Comptes Rendus Chim 17:849–859. https://doi.org/10.1016/j.crci.2014.03.011

    Article  CAS  Google Scholar 

  • Nájera JBP, Tabche LM, Mueller M (1997) Estudio sobre el tratamiento de aguas residuales industriales altamente concentradas en metales pesados bajo aglomeración esférica. J Mex Chem Soc 41:51–56

    Google Scholar 

  • Nancharaiah YV, Venkata Mohan S, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114. https://doi.org/10.1016/j.biortech.2015.06.058

    Article  CAS  Google Scholar 

  • Nazari AM, Cox PW, Waters KE (2015) Biosorptive flotation of copper ions from dilute solution using BSA-coated bubbles. Miner Eng 75:140–145. https://doi.org/10.1016/J.MINENG.2014.07.023

    Article  CAS  Google Scholar 

  • Neeraj G, Krishnan S, Senthil Kumar P et al (2016) Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. J Mol Liq 214:335–346. https://doi.org/10.1016/j.molliq.2015.11.051

    Article  CAS  Google Scholar 

  • Nemati M, Hosseini SM, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J Hazard Mater 337:90–104. https://doi.org/10.1016/j.jhazmat.2017.04.074

    Article  CAS  Google Scholar 

  • Nithya K, Sathish A, Senthil Kumar P, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J Ind Eng Chem 59:230–241. https://doi.org/10.1016/j.jiec.2017.10.028

    Article  CAS  Google Scholar 

  • Novelo RIM, Hernández EM, Franco CQ et al (2002) Tratamiento de lixiviados con carbón activado. Ing Rev Académica 3:19–27

    Google Scholar 

  • Ntimbani RN, Simate GS, Ndlovu S (2015) Removal of copper ions from dilute synthetic solution using staple ion exchange fibres: equilibrium and kinetic studies. J Environ Chem Eng 3:1258–1266. https://doi.org/10.1016/j.jece.2015.02.010

    Article  CAS  Google Scholar 

  • Pacheco Tanaka ME, Pimentel Frisancho JP, Roque Villanueva WF (2010) Cinética de la bioadsorción de iones cadmio (II) y plomo (II) de soluciones acuosas por biomasa residual de café (Coffea arabica L.). Rev Soc Quím Perú 76:279–292

    CAS  Google Scholar 

  • Pal P, Banat F (2014) Comparison of heavy metal ions removal from industrial lean amine solvent using ion exchange resins and sand coated with chitosan. J Nat Gas Sci Eng 18:227–236. https://doi.org/10.1016/j.jngse.2014.02.015

    Article  CAS  Google Scholar 

  • Pap S, Šolević Knudsen T, Radonić J, Maletić S, Igić SM, Turk Sekulić M (2017) Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J Clean Prod 162:958–972. https://doi.org/10.1016/j.jclepro.2017.06.083

    Article  CAS  Google Scholar 

  • Papaevangelou VA, Gikas GD, Tsihrintzis VA (2017) Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: overall performance, and fate and distribution of this element within the wetland environment. Chemosphere 168:716–730. https://doi.org/10.1016/j.chemosphere.2016.11.002

    Article  CAS  Google Scholar 

  • Patil DS, Chavan SM, Oubagaranadin JUK (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4:468–487. https://doi.org/10.1016/J.JECE.2015.11.028

    Article  CAS  Google Scholar 

  • Pavlovska G, Čundeva K, Stafilov T, Zendelovska D (2003) Flotation method for selective separation of silver, cadmium, chromium, manganese, thallium, and zinc from aragonite before atomic absorption spectrometric determination. Sep Sci Technol 38:1111–1124

    Article  CAS  Google Scholar 

  • Polat H, Erdogan D (2007) Heavy metal removal from waste waters by ion flotation. J Hazard Mater 148:267–273

    Article  CAS  Google Scholar 

  • Prica M, Adamovic S, Dalmacija B, Rajic L, Trickovic J, Rapajic S, Becelic-Tomin M (2015) The electrocoagulation/flotation study: the removal of heavy metals from the waste fountain solution. Process Saf Environ Prot 94:262–273

    Article  CAS  Google Scholar 

  • Ramesh ST, Gandhimathi R, Hamoneth Joesun J, Nidheesh PV (2013) Novel agricultural waste adsorbent, Cyperus rotundus, for removal of heavy metal mixtures from aqueous solutions. Environ Eng Sci 30:74–81. https://doi.org/10.1089/ees.2012.0192

    Article  CAS  Google Scholar 

  • Ramos K (2008) Tratamiento de desechos líquidos tóxicos de una industria de recubrimiento metálico por precipitación e intercambio iónico. Universidad de los Andes

  • Rezania S, Ponraj M, Talaiekhozani A et al (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133. https://doi.org/10.1016/j.jenvman.2015.08.018

    Article  CAS  Google Scholar 

  • Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053

    Article  CAS  Google Scholar 

  • Ribeiro B, Paim T, Rocha S (2008) Utilización de hidróxido de magnesio en la precipitación de metales pesados. Rev la Fac Ing 22:26–32

    Google Scholar 

  • Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67. https://doi.org/10.1016/j.ecolmodel.2012.07.004

    Article  CAS  Google Scholar 

  • Ríos Cardona JN (2005) Remoción de amonio y de metales pesados de los lixiviados del relleno sanitario“ La Esmeralda” de la ciudad de Manizales por electrocoagulación

  • Rios Reyes C, Appasamy D, Roberts C (2011) An integrated remediation system using synthetic and natural zeolites for treatment of wastewater and contaminated sediments. Dyna 78:125–134

    Google Scholar 

  • Sajid M, Khaled Nazal M, Ihsanullah et al (2018) Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Sep Purif Technol 191:400–423. https://doi.org/10.1016/j.seppur.2017.09.011

    Article  CAS  Google Scholar 

  • Salem IA, Salem MA, El-Ghobashy MA (2017) The dual role of ZnO nanoparticles for efficient capture of heavy metals and acid blue 92 from water. J Mol Liq 248:527–538. https://doi.org/10.1016/j.molliq.2017.10.060

    Article  CAS  Google Scholar 

  • Santander M, Valderrama L (2015) Dissolved air flotation of arsenic adsorbent particles. Ing e Investig 35:36–42

    Article  CAS  Google Scholar 

  • Santander M, Tapia P, Pávez O, Valderrama L, Guzmán D (2009) Remoción de partículas adsorbentes de iones cobre por flotación Jet. Rev Metal 45:365–374

    Article  CAS  Google Scholar 

  • Saravanan A, Kumar PS, Renita AA (2018) Hybrid synthesis of novel material through acid modification followed ultrasonication to improve adsorption capacity for zinc removal. J Clean Prod 172:92–105. https://doi.org/10.1016/j.jclepro.2017.10.109

    Article  CAS  Google Scholar 

  • Selim KA, El-Tawil RS, Rostom M (2017) Utilization of surface modified phyllosilicate mineral for heavy metals removal from aqueous solutions. Egypt J Pet 27:393–401. https://doi.org/10.1016/j.ejpe.2017.07.003

    Article  Google Scholar 

  • SenthilKumar P, Ramalingam S, Abhinaya RV, Kirupha SD, Vidhyadevi T, Sivanesan S (2012) Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. Can J Chem Eng 90:973–982. https://doi.org/10.1002/cjce.20588

    Article  CAS  Google Scholar 

  • Shahbazi A, Younesi H, Badiei A (2011) Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem Eng J 168:505–518. https://doi.org/10.1016/j.cej.2010.11.053

    Article  CAS  Google Scholar 

  • Shen C, Chen C, Wen T, Zhao Z, Wang X, Xu A (2015) Superior adsorption capacity of gC 3 N 4 for heavy metal ions from aqueous solutions. J Colloid Interface Sci 456:7–14

    Article  CAS  Google Scholar 

  • Sinha V, Manikandan NA, Pakshirajan K, Chaturvedi R (2017) Continuous removal of Cr(VI) from wastewater by phytoextraction using Tradescantia pallida plant based vertical subsurface flow constructed wetland system. Int Biodeterior Biodegrad 119:96–103. https://doi.org/10.1016/j.ibiod.2016.10.003

    Article  CAS  Google Scholar 

  • Song X, Yan D, Liu Z et al (2011) Performance of laboratory-scale constructed wetlands coupled with micro-electric field for heavy metal-contaminating wastewater treatment. Ecol Eng 37:2061–2065. https://doi.org/10.1016/j.ecoleng.2011.08.019

    Article  Google Scholar 

  • Soto Regalado E, Lozano Ramírez T, Castillo B et al (2004) Remoción de metales pesados en aguas residuales mediante agentes químicos. Ingenierías 7:46–51

    Google Scholar 

  • Soto E, Miranda R d C, Sosa CA, Loredo JA (2006) Optimización del proceso de remoción de metales pesados de agua residual de la industria galvánica por precipitación química. Inf Tecnológica 17:33–42

    CAS  Google Scholar 

  • Sriharsha DV, Lokesh Kumar R, Savitha J (2017) Immobilized fungi on Luffa cylindrica: an effective biosorbent for the removal of lead. J Taiwan Inst Chem Eng 80:589–595. https://doi.org/10.1016/j.jtice.2017.08.032

    Article  CAS  Google Scholar 

  • Suazo-Madrid EA, Morales-Barrera L, Cristiani-Urbina M del C, Cristiani-Urbina E (2010) EFECTO DEL pH SOBRE LA BIOSORCIÓN DE NÍQUEL(II) POR Saccharomyces cerevisiae var. ellipsoideus. (Spanish). Eff pH NICKEL(II) BIOSORPTION BY Saccharomyces cerevisiae var ellipsoideus 41:1–12

  • Taseidifar M, Makavipour F, Pashley RM, Rahman AFMM (2017) Removal of heavy metal ions from water using ion flotation. Environ Technol Innov 8:182–190. https://doi.org/10.1016/j.eti.2017.07.002

    Article  Google Scholar 

  • Tavakoli O, Goodarzi V, Saeb MR et al (2017) Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. J Hazard Mater 334:256–266. https://doi.org/10.1016/j.jhazmat.2017.04.023

    Article  CAS  Google Scholar 

  • Tessele F, Misra M, Rubio J (1998) Removal of Hg, As and Se ions from gold cyanide leach solutions by dissolved air flotation. Miner Eng 11:535–543. https://doi.org/10.1016/S0892-6875(98)00035-1

    Article  CAS  Google Scholar 

  • Tromp K, Lima AT, Barendregt A, Verhoeven JTA (2012) Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J Hazard Mater 203:290–298. https://doi.org/10.1016/j.jhazmat.2011.12.024

    Article  CAS  Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  • Vásquez TGP, Botero AEC, de Mesquita LMS, Torem ML (2007) Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner Eng 20:939–944

    Article  Google Scholar 

  • Velásquez J. J, Quintana G, Gómez C, Echavarría Y (2008) Adsorción de NI(II) en carbón activado de cascarilla de café. Rev Investig Apl 2

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    Article  CAS  Google Scholar 

  • Volesky B, Naja G (2007) Biosorption technology: starting up an enterprise. Int J Technol Transf Commer 6:196–211. https://doi.org/10.1504/IJTTC.2007.017806

    Article  Google Scholar 

  • Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    Article  CAS  Google Scholar 

  • Wangb Q, Fenglian F (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. https://doi.org/10.1016/J.JENVMAN.2010.11.011

    Article  Google Scholar 

  • Wu M, Liang J, Tang J, Li G, Shan S, Guo Z, Deng L (2017) Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. J Hazard Mater 337:189–197. https://doi.org/10.1016/j.jhazmat.2017.05.006

    Article  CAS  Google Scholar 

  • Xu L, Cao G, Xu X et al (2017) Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: influence of operating parameters and electrolyte nature. J Environ Manag 204:394–403. https://doi.org/10.1016/j.jenvman.2017.09.020

    Article  CAS  Google Scholar 

  • Yagnentkovsky N (2011) Aplicación de técnicas de biorremediación para el tratamiento de residuos industriales con alto contenido de metales pesados. Universidad Nacional de La Plata UNLP

  • Yalcin E, Cavusoglu K, Maras M, Biyikoglu M (2008) Biosorption of lead(II) and copper(II) metal ions on Cladophora glomerata (L.) Kutz. (Chlorophyta) algae: effect of algal surface modification. Acta Chim Slov 55:228–232

    CAS  Google Scholar 

  • Yeh TY, Chou CC, Pan CT (2009) Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination 249:368–373. https://doi.org/10.1016/j.desal.2008.11.025

    Article  CAS  Google Scholar 

  • Yu X-Z, Feng Y-X, Liang Y-P (2016) Kinetics of phyto-accumulation of hexavalent and trivalent chromium in rice seedlings. Int Biodeterior Biodegrad 128:72–77. https://doi.org/10.1016/j.ibiod.2016.09.003

    Article  CAS  Google Scholar 

  • Zeng X, Wang Z, Ji Z, Wei S (2015) A new montmorillonite/humic acid complex prepared in alkaline condition to remove cadmium in waste water. Pol J Environ Stud 24:817–821

    CAS  Google Scholar 

  • Zewail TM, Yousef NS (2015) Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alex Eng J 54:83–90. https://doi.org/10.1016/j.aej.2014.11.008

    Article  Google Scholar 

  • Zhang Y-J, Ou J-L, Duan Z-K, Xing ZJ, Wang Y (2015) Adsorption of Cr (VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids Surf A Physicochem Eng Asp 481:108–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National University of Colombia’s Medellín Campus and its attached professors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Carvajal-Flórez.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvajal-Flórez, E., Santiago-Alonso Cardona-Gallo Technologies applicable to the removal of heavy metals from landfill leachate. Environ Sci Pollut Res 26, 15725–15753 (2019). https://doi.org/10.1007/s11356-019-04888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04888-7

Keywords

Navigation