Skip to main content

Application of Pseudotyped Viruses

  • Chapter
  • First Online:
Pseudotyped Viruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1407))

Abstract

Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

ADCC:

Antibody-dependent cell-mediated cytotoxicity

BASV:

Bas-Congo virus

COVID-19:

Coronavirus disease 2019

DPP4:

Dipeptidyl peptidase 4

EBOV:

Ebola virus

EV71:

Enterovirus 71

EV71:

Enterovirus 71

hACE2:

Human angiotensin-converting enzyme 2

HIV:

Human immunodeficiency virus

HPV:

Human papillomavirus

MARV:

Marburg virus

MERS-CoV:

Middle East respiratory syndrome coronavirus

NiV:

Nipah virus

PBNA:

Pseudovirion-based neutralization assay

SARS-CoV:

Severe acute respiratory syndrome coronavirus

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

VSV:

Vesicular stomatitis virus

References

  1. Li, Q., Liu, Q., Huang, W., Li, X., Wang, Y.: Current status on the development of pseudoviruses for enveloped viruses. Rev. Med. Virol. 28 (2018). https://doi.org/10.1002/rmv.1963

  2. Li, H., et al.: Establishment of replication-competent vesicular stomatitis virus-based recombinant viruses suitable for SARS-CoV-2 entry and neutralization assays. Emerg Microbes Infect. 9, 2269–2277 (2020). https://doi.org/10.1080/22221751.2020.1830715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sinn, P.L., et al.: Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J. Virol. 77, 5902–5910 (2003). https://doi.org/10.1128/jvi.77.10.5902-5910.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elshabrawy, H.A., et al.: Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol. 88, 4353–4365 (2014). https://doi.org/10.1128/JVI.03050-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zost, S.J., et al.: Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 584, 443–449 (2020). https://doi.org/10.1038/s41586-020-2548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, S.Y., et al.: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell. 106, 117–126 (2001). https://doi.org/10.1016/s0092-8674(01)00418-4

    Article  CAS  PubMed  Google Scholar 

  7. Hoffmann, M., et al.: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271-280 e278 (2020). https://doi.org/10.1016/j.cell.2020.02.052

    Article  Google Scholar 

  8. Roelle, S.M., Shukla, N., Pham, A.T., Bruchez, A.M., Matreyek, K.A.: Expanded ACE2 dependencies of diverse SARS-like coronavirus receptor binding domains. PLoS Biol. 20, e3001738 (2022). https://doi.org/10.1371/journal.pbio.3001738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song, W., et al.: Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry. Virology. 471-473, 49–53 (2014). https://doi.org/10.1016/j.virol.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  10. Wu, L., et al.: Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discov. 6, 68 (2020). https://doi.org/10.1038/s41421-020-00210-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ou, X., et al.: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020). https://doi.org/10.1038/s41467-020-15562-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, F., et al.: SARS-CoV-2 pseudovirus infectivity and expression of viral entry-related factors ACE2, TMPRSS2, Kim-1, and NRP-1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. J. Med. Virol. 93, 6671–6685 (2021). https://doi.org/10.1002/jmv.27244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, D., et al.: Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One. 9, e110893 (2014). https://doi.org/10.1371/journal.pone.0110893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salvador, B., Zhou, Y., Michault, A., Muench, M.O., Simmons, G.: Characterization of chikungunya pseudotyped viruses: identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology. 393, 33–41 (2009). https://doi.org/10.1016/j.virol.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  15. Steffen, I., et al.: Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses. J. Virol. 87, 9558–9568 (2013). https://doi.org/10.1128/JVI.01183-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharkey, C.M., North, C.L., Kuhn, R.J., Sanders, D.A.: Ross River virus glycoprotein-pseudotyped retroviruses and stable cell lines for their production. J. Virol. 75, 2653–2659 (2001). https://doi.org/10.1128/JVI.75.6.2653-2659.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muller, M.A., et al.: Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. mBio. 3 (2012). https://doi.org/10.1128/mBio.00515-12

  18. MacKenzie, T.C., et al.: Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol. Ther. 6, 349–358 (2002). https://doi.org/10.1006/mthe.2002.0681

    Article  CAS  PubMed  Google Scholar 

  19. Wallerstrom, S., et al.: Detection of antibodies against H5 and H7 strains in birds: evaluation of influenza pseudovirus particle neutralization tests. Infect Ecol Epidemiol. 4 (2014). https://doi.org/10.3402/iee.v4.23011

  20. Nie, J., et al.: Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc. 15, 3699–3715 (2020). https://doi.org/10.1038/s41596-020-0394-5

    Article  CAS  PubMed  Google Scholar 

  21. Huang, W., Wang, Y.: The application of Pseudotyped virus Technology in the Evaluation of prevention and control products for emerging viral infectious diseases Chinese. J. Virol. 6, 1177–1186 (2020). https://doi.org/10.13242/j.cnki.bingduxuebao.003680-en

    Article  Google Scholar 

  22. Lei, D., Griffiths, E., Martin, J.: WHO working group meeting to develop WHO recommendations to assure the quality, safety and efficacy of enterovirus 71 vaccines. Vaccine. 38, 4917–4923 (2020). https://doi.org/10.1016/j.vaccine.2020.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roozendaal, R., et al.: Nonhuman primate to human immunobridging to infer the protective effect of an Ebola virus vaccine candidate. NPJ Vaccines. 5, 112 (2020). https://doi.org/10.1038/s41541-020-00261-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Organization, W.H. Consolidated guidelines on HIV, viral hepatitis and STI prevention, diagnosis, treatment and care for key populations. https://apps.who.int/iris/rest/bitstreams/1453332/retrieve. (2022)

  25. Krajden, M., et al.: Assessment of HPV 16 and HPV 18 antibody responses by pseudovirus neutralization, Merck cLIA and Merck total IgG LIA immunoassays in a reduced dosage quadrivalent HPV vaccine trial. Vaccine. 32, 624–630 (2014). https://doi.org/10.1016/j.vaccine.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Krajden, M., et al.: Human papillomavirus 16 (HPV 16) and HPV 18 antibody responses measured by pseudovirus neutralization and competitive Luminex assays in a two- versus three-dose HPV vaccine trial. Clin. Vaccine Immunol. 18, 418–423 (2011). https://doi.org/10.1128/CVI.00489-10

    Article  CAS  PubMed  Google Scholar 

  27. Carnell, G.W., Ferrara, F., Grehan, K., Thompson, C.P., Temperton, N.J.: Pseudotype-based neutralization assays for influenza: a systematic analysis. Front. Immunol. 6, 161 (2015). https://doi.org/10.3389/fimmu.2015.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trombetta, C.M., Perini, D., Mather, S., Temperton, N., Montomoli, E.: Overview of serological techniques for influenza vaccine evaluation: past, present and future. Vaccines (Basel). 2, 707–734 (2014). https://doi.org/10.3390/vaccines2040707

    Article  PubMed  Google Scholar 

  29. Wu, X., et al.: Development and evaluation of a pseudovirus-luciferase assay for rapid and quantitative detection of neutralizing antibodies against enterovirus 71. PLoS One. 8, e64116 (2013). https://doi.org/10.1371/journal.pone.0064116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, P., et al.: Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J. Biol. Chem. 287, 6406–6420 (2012). https://doi.org/10.1074/jbc.M111.301622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sarzotti-Kelsoe, M., et al.: Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods. 409, 131–146 (2014). https://doi.org/10.1016/j.jim.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  32. Nie, J., Huang, W., Liu, Q., Wang, Y.: HIV-1 pseudoviruses constructed in China regulatory laboratory. Emerg Microbes Infect. 9, 32–41 (2020). https://doi.org/10.1080/22221751.2019.1702479

    Article  CAS  PubMed  Google Scholar 

  33. Laher, F., et al.: Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: a randomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Med. 17, e1003038 (2020). https://doi.org/10.1371/journal.pmed.1003038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Almasaud, A., Alharbi, N.K., Hashem, A.M.: Generation of MERS-CoV Pseudotyped viral particles for the evaluation of neutralizing antibodies in mammalian sera. Methods Mol. Biol. 2099, 117–126 (2020). https://doi.org/10.1007/978-1-0716-0211-9_10

    Article  CAS  PubMed  Google Scholar 

  35. Kalkeri, R., et al.: SARS-CoV-2 spike Pseudoviruses: a useful tool to study virus entry and address emerging neutralization escape phenotypes. Microorganisms. 9 (2021). https://doi.org/10.3390/microorganisms9081744

  36. Pastrana, D.V., et al.: Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology. 321, 205–216 (2004). https://doi.org/10.1016/j.virol.2003.12.027

    Article  CAS  PubMed  Google Scholar 

  37. Nie, J., Huang, W., Wu, X., Wang, Y.: Optimization and validation of a high throughput method for detecting neutralizing antibodies against human papillomavirus (HPV) based on pseudovirons. J. Med. Virol. 86, 1542–1555 (2014). https://doi.org/10.1002/jmv.23995

    Article  CAS  PubMed  Google Scholar 

  38. Nie, J., Liu, Y., Huang, W., Wang, Y.: Development of a triple-color Pseudovirion-based assay to detect neutralizing antibodies against human papillomavirus. Viruses. 8, 107 (2016). https://doi.org/10.3390/v8040107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, H., et al.: Sequential immunization with consensus influenza hemagglutinins raises cross-reactive neutralizing antibodies against various heterologous HA strains. Vaccine. 35, 305–312 (2017). https://doi.org/10.1016/j.vaccine.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  40. Cao, Z., et al.: The application of a safe neutralization assay for Ebola virus using lentivirus-based Pseudotyped virus. Virol. Sin. 36, 1648–1651 (2021). https://doi.org/10.1007/s12250-021-00405-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Montefiori, D.C.: Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol. Biol. 485, 395–405 (2009). https://doi.org/10.1007/978-1-59745-170-3_26

    Article  CAS  PubMed  Google Scholar 

  42. Barouch, D.H., et al.: Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 503, 224–228 (2013). https://doi.org/10.1038/nature12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Corti, D., et al.: Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science. 351, 1339–1342 (2016). https://doi.org/10.1126/science.aad5224

    Article  CAS  PubMed  Google Scholar 

  44. Goo, J., et al.: Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein. Virus Res. 278, 197863 (2020). https://doi.org/10.1016/j.virusres.2020.197863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shrestha, L.B., Foster, C., Rawlinson, W., Tedla, N., Bull, R.A.: Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission. Rev. Med. Virol. e2381 (2022). https://doi.org/10.1002/rmv.2381

  46. Zhang, C., et al.: Epitope clustering analysis for vaccine-induced human antibodies in relationship to a panel of murine monoclonal antibodies against HPV16 viral capsid. Vaccine. 36, 6761–6771 (2018). https://doi.org/10.1016/j.vaccine.2018.09.035

    Article  CAS  PubMed  Google Scholar 

  47. Pinto, D., et al.: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 583, 290–295 (2020). https://doi.org/10.1038/s41586-020-2349-y

    Article  CAS  PubMed  Google Scholar 

  48. Jones, B.E., et al.: LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. bioRxiv. (2020). https://doi.org/10.1101/2020.09.30.318972

  49. Boucau, J., et al.: Monoclonal antibody treatment drives rapid culture conversion in SARS-CoV-2 infection. Cell Rep Med. 3, 100678 (2022). https://doi.org/10.1016/j.xcrm.2022.100678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shafiq, A., et al.: Investigation of the binding and dynamic features of a.30 variant revealed higher binding of RBD for hACE2 and escapes the neutralizing antibody: a molecular simulation approach. Comput. Biol. Med. 146, 105574 (2022). https://doi.org/10.1016/j.compbiomed.2022.105574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X., Tang, K., Guo, Y.: The antifungal isavuconazole inhibits the entry of Lassa virus by targeting the stable signal peptide-GP2 subunit interface of Lassa virus glycoprotein. Antivir. Res. 174, 104701 (2020). https://doi.org/10.1016/j.antiviral.2019.104701

    Article  CAS  PubMed  Google Scholar 

  52. Cote, M., et al.: Small molecule inhibitors reveal Niemann-pick C1 is essential for Ebola virus infection. Nature. 477, 344–348 (2011). https://doi.org/10.1038/nature10380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, X., et al.: Synthesis and biological evaluation of novel tricyclic matrinic derivatives as potential anti-filovirus agents. Acta Pharm. Sin. B. 8, 629–638 (2018). https://doi.org/10.1016/j.apsb.2018.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, J., et al.: A comparative high-throughput screening protocol to identify entry inhibitors of enveloped viruses. J. Biomol. Screen. 19, 100–107 (2014). https://doi.org/10.1177/1087057113494405

    Article  CAS  PubMed  Google Scholar 

  55. Chong, H., Zhu, Y., Yu, D., He, Y.: Structural and functional characterization of membrane fusion inhibitors with extremely potent activity against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus. J. Virol. 92 (2018). https://doi.org/10.1128/JVI.01088-18

  56. Gonzalez-Maldonado, P., et al.: Screening of natural products inhibitors of SARS-CoV-2 entry. Molecules. 27 (2022). https://doi.org/10.3390/molecules27051743

  57. Xu, L., et al.: DNA triplex-based complexes display anti-HIV-1-cell fusion activity. Nucleic Acid Ther. 25, 219–225 (2015). https://doi.org/10.1089/nat.2015.0535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, G., et al.: A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol. J. 10, 266 (2013). https://doi.org/10.1186/1743-422X-10-266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ge, S., et al.: Repositioning of histamine H1 receptor antagonist: doxepin inhibits viropexis of SARS-CoV-2 spike pseudovirus by blocking ACE2. Eur. J. Pharmacol. 896, 173897 (2021). https://doi.org/10.1016/j.ejphar.2021.173897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xia, S., et al.: Structural and functional basis for pan-CoV fusion inhibitors against SARS-CoV-2 and its variants with preclinical evaluation. Signal Transduct. Target. Ther. 6, 288 (2021). https://doi.org/10.1038/s41392-021-00712-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fan, C., et al.: A human DPP4-Knockin Mouse’s susceptibility to infection by authentic and Pseudotyped MERS-CoV. Viruses. 10 (2018). https://doi.org/10.3390/v10090448

  62. Nie, J., et al.: Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system. Sci. Rep. 7, 42769 (2017). https://doi.org/10.1038/srep42769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bao, L., et al.: The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 583, 830–833 (2020). https://doi.org/10.1038/s41586-020-2312-y

    Article  CAS  PubMed  Google Scholar 

  64. Yamada, H., et al.: A novel hamster model of SARS-CoV-2 respiratory infection using a pseudotyped virus. Sci. Rep. 12, 11125 (2022). https://doi.org/10.1038/s41598-022-15258-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Q., Tang, K., Zhang, X., Chen, P., Guo, Y.: Establishment of pseudovirus infection mouse models for in vivo pharmacodynamics evaluation of filovirus entry inhibitors. Acta Pharm. Sin. B. 8, 200–208 (2018). https://doi.org/10.1016/j.apsb.2017.08.003

    Article  PubMed  Google Scholar 

  66. Ma, J., et al.: In vitro and in vivo efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Hum. Vaccin. Immunother. 15, 2286–2294 (2019). https://doi.org/10.1080/21645515.2019.1627820

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhou, S., et al.: A safe and sensitive enterovirus A71 infection model based on human SCARB2 knock-in mice. Vaccine. 34, 2729–2736 (2016). https://doi.org/10.1016/j.vaccine.2016.04.029

    Article  CAS  PubMed  Google Scholar 

  68. Wu, J., Zhao, C., Liu, Q., Huang, W., Wang, Y.: Development and application of a bioluminescent imaging mouse model for chikungunya virus based on pseudovirus system. Vaccine. 35, 6387–6394 (2017). https://doi.org/10.1016/j.vaccine.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  69. Tian, Y., et al.: Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus. Sci. Rep. 8, 8484 (2018). https://doi.org/10.1038/s41598-018-26822-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cai, M., et al.: Analysis of the evolution, infectivity and antigenicity of circulating rabies virus strains. Emerg Microbes Infect. 11, 1474–1487 (2022). https://doi.org/10.1080/22221751.2022.2078742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ning, T., et al.: Antigenic drift of influenza a(H7N9) virus hemagglutinin. J. Infect. Dis. 219, 19–25 (2019). https://doi.org/10.1093/infdis/jiy408

    Article  CAS  PubMed  Google Scholar 

  72. Shang, H., et al.: Genetic and neutralization sensitivity of diverse HIV-1 env clones from chronically infected patients in China. J. Biol. Chem. 286, 14531–14541 (2011). https://doi.org/10.1074/jbc.M111.224527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu, R., et al.: HA gene amino acid mutations contribute to antigenic variation and immune escape of H9N2 influenza virus. Vet. Res. 53, 43 (2022). https://doi.org/10.1186/s13567-022-01058-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Labrosse, B., et al.: Detection of extensive cross-neutralization between pandemic and seasonal a/H1N1 influenza viruses using a pseudotype neutralization assay. PLoS One. 5, e11036 (2010). https://doi.org/10.1371/journal.pone.0011036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, H., et al.: Analysis of cross-reactive neutralizing antibodies in human HFMD serum with an EV71 pseudovirus-based assay. PLoS One. 9, e100545 (2014). https://doi.org/10.1371/journal.pone.0100545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Q., et al.: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 182, 1284-1294 e1289 (2020). https://doi.org/10.1016/j.cell.2020.07.012

    Article  CAS  Google Scholar 

  77. Zhang, L., et al.: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 6013 (2020). https://doi.org/10.1038/s41467-020-19808-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, L., et al.: Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, animal tropism, and antibody neutralization. Commun Biol. 4, 1196 (2021). https://doi.org/10.1038/s42003-021-02728-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, T., et al.: Aggregation of high-frequency RBD mutations of SARS-CoV-2 with three VOCs did not cause significant antigenic drift. J. Med. Virol. 94, 2108–2125 (2022). https://doi.org/10.1002/jmv.27596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu, X., et al.: Effects of N-linked glycan on Lassa virus envelope glycoprotein cleavage, infectivity, and immune response. Virol. Sin. 36, 774–783 (2021). https://doi.org/10.1007/s12250-021-00358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stone, J.A., Nicola, A.V., Baum, L.G., Aguilar, H.C.: Multiple novel functions of Henipavirus O-glycans: the first O-glycan functions identified in the paramyxovirus family. PLoS Pathog. 12, e1005445 (2016). https://doi.org/10.1371/journal.ppat.1005445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, Q., et al.: Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Sci. Rep. 7, 45552 (2017). https://doi.org/10.1038/srep45552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ryan Chastain-Gross, Ph.D., from Liwen Bianji (Edanz) (www.liwenbianji.cn/) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cui, Q., Huang, W. (2023). Application of Pseudotyped Viruses. In: Wang, Y. (eds) Pseudotyped Viruses. Advances in Experimental Medicine and Biology, vol 1407. Springer, Singapore. https://doi.org/10.1007/978-981-99-0113-5_3

Download citation

Publish with us

Policies and ethics