Skip to main content

Statistical Analysis of Turbulent Fluctuations

  • Chapter
  • First Online:
Statistics and Scaling in Turbulent Rayleigh-Bénard Convection

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1039 Accesses

Abstract

We first introduce the basic statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations in general. Then we discuss the closure problem in turbulence. Because of this closure problem, exact implicit relations between different statistical quantities are useful. We derive two implicit results relating the PDF of fluctuations to two conditional means respectively for stationary and statistically homogeneous fluctuations. Furthermore, we discuss how these implicit PDF formulae have been applied to studying the temperature fluctuations in turbulent Rayleigh–Bénard convection, and the implications of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Lumley, Stochastic Tools in Tturbulence (Dover, New York, 2007)

    Google Scholar 

  2. M.T. Landahl, E. Mollo-Christensen, Turbulence and Random Processes in Fluid Mechanics (Cambridge University Press, New York, 1992)

    MATH  Google Scholar 

  3. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  4. T.S. Lundgren, Distribution functions in the statistical theory of turbulence. Phys. Fluids 10, 969–975 (1967)

    Article  Google Scholar 

  5. A.S. Monin, Equations of turbulent motion. Prikl. Mat. Mekh. 31, 1057–1067 (1967)

    MATH  Google Scholar 

  6. E.A. Novikov, Kinetic equations for a vortex field. Sov. Phys. Dokl. 12, 1006–1008 (1968)

    Google Scholar 

  7. R. Friedrich, A. Daitche, O. Kamps et al., The Lundgren-Monin-Novikov hierarchy: Kinetic equations for turbulence. C. R. Physique 13, 929–953 (2012)

    Article  Google Scholar 

  8. S.B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  9. S.B. Pope, E.S.C. Ching, Stationary probability density functions in turbulence. Phys. Fluids A 5, 1529–1531 (1993)

    Article  MATH  Google Scholar 

  10. E.S.C. Ching, General formula for stationary or statistically homogeneous probability density functions. Phys. Rev. E 53, 5899–5903; Erratum. Phys. Rev. E 55, 4830–4830 (1997)

    Google Scholar 

  11. E.S.C. Ching, R. Kraichnan, Exact results for conditional means of a passive scalar in certain statistically homogeneous flows. J. Stat. Phys. 93, 787–795 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y.G. Sinai, V. Yakhot, Limiting probability distributions of a passive scalar in a random velocity field. Phys. Rev. Lett. 63, 1962–1964 (1989)

    Article  Google Scholar 

  13. G. Eyink, Exact results on stationary turbulence in 2D: consequences of vorticity conservation. Phys. D 91, 97–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. E.S.C. Ching, Probability densities of turbulent temperature fluctuations. Phys. Rev. Lett. 70, 283–286 (1993)

    Article  Google Scholar 

  15. F. Heslot, B. Castaing, A. Libchaber, Transitions to turbulence in helium gas. Phys. Rev. A 36, 5870–5873 (1987)

    Article  Google Scholar 

  16. X. He, P. Tong, Measurements of the thermal dissipation field in turbulent Rayleigh-Benard convection. Phys. Rev. E 79, 026306 (2009)

    Article  Google Scholar 

  17. J. Mi, R.A. Antonia, General relation for stationary probability density functions. Phys. Rev. E 51, 4466–4468 (1995)

    Article  Google Scholar 

  18. E.S.C. Ching, Y.K. Tsang, Passive scalar conditional statistics in a model of random advection. Phys. Fluids 9, 1353–1361 (1997)

    Article  Google Scholar 

  19. D. Schertzer, S. Lovejoy, in The dimension and intermittency of atmospheric dynamics, ed. by L.J.S. Bradbury, F. Durst, B.E. Launder, et al. Turbulent shear flows 4 (Springer, Berlin, 1985), pp. 7–33

    Google Scholar 

  20. B. Castaing, G. Gunaratne, F. Heslot et al., Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 204, 1–30 (1989)

    Article  Google Scholar 

  21. E.S.C. Ching, Probabilities for temperature differences in Rayleigh-Bénard convection. Phys. Rev. A 44, 3622–3629 (1991)

    Article  Google Scholar 

  22. Q. Zhou, C. Sun, K.-Q. Xia, Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361–372 (2008)

    Article  MATH  Google Scholar 

  23. R. Ni, S.-D. Huang, K.-Q. Xia, Local energy dissipation rate balances local heat flux in the center of turbulent thermal convection. Phys. Rev. Lett. 107, 174503 (2011)

    Article  Google Scholar 

  24. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (MIT Press, Cambridge, 1975)

    Google Scholar 

  25. J. Lülff, M. Wilczek, R. Friedrich, Temperature statistics in turbulent Rayleigh-Béard convection. New J. Phy. 13, 015002 (2011)

    Article  Google Scholar 

  26. E.S.C. Ching, H. Guo, X.D. Shang et al., Extraction of plumes in turbulent thermal convection. Phys. Rev. Lett. 93, 124501 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. C. Ching .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Ching, E.S.C. (2014). Statistical Analysis of Turbulent Fluctuations. In: Statistics and Scaling in Turbulent Rayleigh-Bénard Convection. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4560-23-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-23-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4560-22-1

  • Online ISBN: 978-981-4560-23-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics