Skip to main content

Targeting Molecular and Cellular Mechanisms in Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Chronic obstructive pulmonary disease (COPD), also known as chronic obstructive airway disease (COAD) or chronic obstructive lung disease (COLD), is the leading cause of disability worldwide. It is an increasing worldwide health issue and becomes the third most important reason of mortality and the fifth commonest cause of ill health and compromised quality of life in the world by 2020. Cigarette smoking is one of the prominent causes for pathological development of COPD. In addition, alpha1-antitrypsin (AAT) deficiency is an inherited condition, which is associated with COPD. The two main peculiar features of the disease are chronic bronchitis (contraction of airways/bronchi due to inflammation) and emphysema (damage of alveolar wall). COPD is recognised by increased number of cytotoxic T-lymphocytes, neutrophils (NPHs) and alveolar macrophages (MPs) and number of inflammatory mediators like growth factors, cytokines and chemokines. In addition, reactive oxygen species (ROS) and imbalance between oxidant and antioxidant mechanisms are also involved in pathophysiological progression of inflammatory COPD. The pulmonary inflammation may also responsible for growth, progression and development of lung cancer. Plasma levels of elastolytic enzymes such as serine proteases, cathepsins and matrix metalloproteinase (MMP) are highly increased in COPD. The pulmonary inflammation leads to development of systemic inflammation and other comorbid disorders. The disease is progressive and inflammation is predominant in comparison to asthma which seems to be resistant towards corticosteroid treatment. Specific treatment options that are working against the remodelling and inflammation need to be developed for the treatment of COPD. Hence, the present book chapter will discuss about the strategies for targeting COPD at cellular and molecular levels including their signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Devine JF (2008) Chronic obstructive pulmonary disease: an overview. Am Health Drug Benefits 1(7):34–42

    PubMed  PubMed Central  Google Scholar 

  2. https://www.who.int/respiratory/copd/burden/en/ Date accessed: 15.09.20

  3. Centers for Disease Control and Prevention (US), National Center for Chronic Disease Prevention and Health Promotion (US), Office on Smoking and Health (US) (2010) How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Centers for Disease Control and Prevention (US), Atlanta, GA. 7, Pulmonary Diseases. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53021/ Date accessed: 15.09.20

    Google Scholar 

  4. Hersh CP, Campbell EJ, Scott LR, Raby BA (2019) Alpha-1 antitrypsin deficiency as an incidental finding in clinical genetic testing. Am J Respir Crit Care Med 199(2):246–248

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tasch JJ, McLaughlan AT, Nasir AA (2018) A novel approach to screening for Alpha-1 antitrypsin deficiency: inpatient testing at a teaching institution. Chronic Obstr Pulm Dis 5(2):106–110

    PubMed  PubMed Central  Google Scholar 

  6. Sarkar M, Niranjan N, Banyal PK (2017) Mechanisms of hypoxemia. Lung India 34(1):47–60. [published correction appears in Lung India]

    Article  PubMed  PubMed Central  Google Scholar 

  7. https://www.nhp.gov.in/world-copd-day-2018_pg Date accessed 14.09.20

  8. Chee A, Sin DD (2008) Treatment of mild chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 3(4):563–573

    CAS  PubMed  PubMed Central  Google Scholar 

  9. https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) date accessed 14.09.20

  10. Buist AS (2003) Similarities and differences between asthma and chronic obstructive pulmonary disease: treatment and early outcomes. Eur Respir J Suppl 39:30s–35s

    Article  CAS  PubMed  Google Scholar 

  11. D'Urzo AD, Tamari I, Bouchard J, Jhirad R, Jugovic P (2011) New spirometry interpretation algorithm: primary care respiratory Alliance of Canada approach. Can Fam Physician 57(10):1148–1152

    PubMed  PubMed Central  Google Scholar 

  12. https://www.who.int/respiratory/copd/GOLD_WR_06.pdf Date accessed 14.09.20

  13. Akata K, Van Eeden SF (2020) Lung macrophage functional properties in chronic obstructive pulmonary disease. Int J Mol Sci 21(3):853

    Article  CAS  PubMed Central  Google Scholar 

  14. MacNee (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(4):258–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Papandrinopoulou D, Tzouda V, Tsoukalas G (2012) Lung compliance and chronic obstructive pulmonary disease. Pulm Med 2012:542769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barnes PJ, Cosio MG (2004) Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med 1(1):e20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Metzemaekers M, Gouwy M, Proost P (2020) Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 17(5):433–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pease JE, Sabroe I (2002) The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am J Respir Med 1(1):19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNFalpha in pulmonary pathophysiology. Respir Res 7(1):125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ojiaku CA, Yoo EJ, Panettieri RA Jr (2017) Transforming growth factor β1 function in airway remodeling and hyperresponsiveness. The missing link? Am J Respir Cell Mol Biol 56(4):432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung KF (2005) Inflammatory mediators in chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy 4(6):619–625

    Article  CAS  PubMed  Google Scholar 

  22. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung KF (2001) Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 34:50s–59s

    Article  CAS  PubMed  Google Scholar 

  24. Shu DY, Hutcheon AEK, Zieske JD, Guo X (2019) Epidermal growth factor stimulates transforming growth factor-beta receptor type II expression in corneal epithelial cells. Sci Rep 9(1):8079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lacoste JY, Bousquet J, Chanez P (1993) Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis and chronic obstructive pulmonary disease. J Allergy Clin Immunol 92:537–548

    Article  CAS  PubMed  Google Scholar 

  26. Pandey KC, De S, Mishra PK (2017) Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol 8:512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rovina N, Koutsoukou A, Koulouris NG (2013) Inflammation and immune response in COPD: where do we stand? Mediat Inflamm 2013:413735

    Article  CAS  Google Scholar 

  28. Barnes PJ (2004) Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 56(4):515–548

    Article  CAS  PubMed  Google Scholar 

  29. Hoenderdos K, Condliffe A (2013) The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 48(5):531–539

    Article  CAS  PubMed  Google Scholar 

  30. O'Donnell R, Breen D, Wilson S, Djukanovic R (2006) Inflammatory cells in the airways in COPD. Thorax 61(5):448–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Punturieri A, Filippov S, Allen E, Caras I, Murray R, Reddy V, Weiss SJ (2000) Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J Exp Med 192:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim S, Roche N, Oliver BG, Mattos W, Barnes PJ, Fan CK (2000b) Balance of matrix metalloprotease-9 and tissue inhibitor of metalloprotease-1 from alveolar macrophages in cigarette smokers. Regulation by interleukin-10. Am J Respir Crit Care Med 162:1355–1360

    Article  CAS  PubMed  Google Scholar 

  33. Madala SK, Pesce JT, Ramalingam TR (2010) Matrix metalloproteinase 12-deficiency augments extracellular matrix degrading metalloproteinases and attenuates IL-13-dependent fibrosis. J Immunol 184(7):3955–3963

    Article  CAS  PubMed  Google Scholar 

  34. Demedts IK, Morel-Montero A, Lebecque S, Pacheco Y, Cataldo D, Joos GF, Pauwels RA, Brusselle GG (2006) Elevated MMP-12 protein levels in induced sputum from patients with COPD. Thorax 61:196–201

    Article  CAS  PubMed  Google Scholar 

  35. Chen L, Chen G, Zhang MQ (2016) Imbalance between subsets of CD8(+) peripheral blood T cells in patients with chronic obstructive pulmonary disease. PeerJ:e2301

    Google Scholar 

  36. Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freeman CM, Han MK, Martinez FJ (2010) Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15. J Immunol 184(11):6504–6513

    Article  CAS  PubMed  Google Scholar 

  38. George L, Brightling CE (2016) Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis 7(1):34–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turato G, Zuin R, Saetta M (2001) Pathogenesis and pathology of COPD. Respiration 68:117–128

    Article  CAS  PubMed  Google Scholar 

  40. Tashkin DP, Wechsler ME (2018) Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 13:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freeman CM, Curtis JL (2017) Lung dendritic cells: shaping immune responses throughout chronic obstructive pulmonary disease progression. Am J Respir Cell Mol Biol 56(2):152–159

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ito T, Connett JM, Kunkel SL, Matsukawa A (2013) The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 4:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–S23

    Article  PubMed  PubMed Central  Google Scholar 

  44. D’Hulst A, Vermeulen KY, Pauwels RA (2002) Cigarette smoke exposure causes increase in pulmonary dendritic cells. Am J Respir Crit Care Med 164:A604

    Google Scholar 

  45. Thorley AJ, Tetley TD (2007) Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2(4):409–428

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hellermann GR, Nagy SB, Kong X, Lockey RF, Mohapatra SS (2002) Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells. Respir Res 3:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  47. Takizawa H, Tanaka M, Takami K, Ohtoshi T, Ito K, Satoh M, Okada Y, Yamasawa F, Nakahara K, Umeda A (2001) Increased expression of transforming growth factor-1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med 163:1476–1483

    Article  CAS  PubMed  Google Scholar 

  48. Franklin WA, Veve R, Hirsch FR, Helfrich BA, Bunn PA Jr (2002) Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 29:3–14

    Article  CAS  PubMed  Google Scholar 

  49. MacNee W (2006) Pathology, pathogenesis, and pathophysiology. BMJ 332(7551):1202–1204

    Article  PubMed Central  Google Scholar 

  50. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 62(4):726–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McGuinness AJ, Sapey E (2017) Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med 6(2):21

    Article  PubMed Central  CAS  Google Scholar 

  52. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev 2016:3164734

    Article  CAS  Google Scholar 

  53. Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad M, Yu J (2009) Inflammatory mechanisms in the lung. J Inflamm Res 2:1–11

    CAS  PubMed  Google Scholar 

  54. Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R (2015) Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis 10:995–1013

    PubMed  PubMed Central  Google Scholar 

  55. Foronjy R, D'Armiento J (2006) The effect of cigarette smoke-derived oxidants on the inflammatory response of the lung. Clin Appl Immunol Rev 6(1):53–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wofniak A, Górecki D, Szpinda Micha B, Mila-Kierzenkowska C, Wofniak B (2013, 2013) Oxidant-antioxidant balance in the blood of patients with chronic obstructive pulmonary disease after smoking cessation. Oxidative Med Cell Longev:1–9

    Google Scholar 

  57. van Eeden SF, Sin DD (2013) Oxidative stress in chronic obstructive pulmonary disease: a lung and systemic process. Can Respir J 20(1):27–29

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  59. Rahman I, MacNee W (2012) Antioxidant pharmacological therapies for COPD. Curr Opin Pharmacol 12(3):256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Radi ZA, Meyerholz DK, Ackermann MR (2010) Pulmonary cyclooxygenase-1 (COX-1) and COX-2 cellular expression and distribution after respiratory syncytial virus and parainfluenza virus infection. Viral Immunol 23(1):43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Machado-Carvalho L, Roca-Ferrer J, Picado C (2014) Prostaglandin E2 receptors in asthma and in chronic rhinosinusitis/nasal polyps with and without aspirin hypersensitivity. Respir Res 15(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M (2019) Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 197:225–242

    Article  CAS  PubMed  Google Scholar 

  64. Montuschi P, Macagno F, Parente P, Valente S, Lauriola L, Ciappi G, Kharitonov SA, Barnes PJ, Ciabattoni G (2005) Effects of cyclo-oxygenase inhibition on exhaled eicosanoids in patients with COPD. Thorax 60(10):827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lopez LR, Guyer KE, Torre IG, Pitts KR, Matsuura E, Ames PR (2014) Platelet thromboxane (11-dehydro-thromboxane B2) and aspirin response in patients with diabetes and coronary artery disease. World J Diabetes 5(2):115–127

    Article  PubMed  PubMed Central  Google Scholar 

  66. Seggev JS, Thornton WH Jr, Edes TE (1991) Serum leukotriene B4 levels in patients with obstructive pulmonary disease. Chest 99(2):289–291

    Article  CAS  PubMed  Google Scholar 

  67. Liu L, Wang JL, Xu XY, Feng M, Hou Y, Chen L (2018) Leukotriene receptor antagonists do not improve lung function decline in COPD: a meta-analysis. Eur Rev Med Pharmacol Sci 22(3):829–834

    CAS  PubMed  Google Scholar 

  68. Shindo K, Koide K, Fukumura M (1998) Platelet-activating factor increases leukotriene B4 release in stimulated alveolar macrophages from asthmatic patients. Eur Respir J 11:1098–1104

    Article  CAS  PubMed  Google Scholar 

  69. Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ (2016) Endothelin. Pharmacol Rev 68(2):357–418

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bacakoglu F, Atasever A, Ozhan MH, Gurgun C, Ozkilic H, Guzelant A (2003) Plasma and bronchoalveolar lavage fluid levels of endothelin-1 in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Respiration 70:594–599

    Article  CAS  PubMed  Google Scholar 

  71. Ricciardolo FL, Sabatini F, Sorbello V, Benedetto S, Defilippi I, Petecchia L, Usai C, Gnemmi I, Balbi B, De Rose V, Ten Hacken NH, Postma DS, Timens W, Di Stefano A (2013) Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax 68(9):803–811

    Article  PubMed  Google Scholar 

  72. Barnes PJ (1992) Effect of bradykinin on airway function. Agents Actions Suppl 38(Pt 3):432–438

    CAS  PubMed  Google Scholar 

  73. De Swert KO, Bracke KR, Demoor T, Brusselle GG, Joos GF (2009) Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation. Respir Res 10(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Renzi D, Pellegrini B, Tonelli F, Surrenti C, Calabrò A (2000) Substance P (neurokinin-1) and neurokinin A (neurokinin-2) receptor gene and protein expression in the healthy and inflamed human intestine. Am J Pathol 157(5):1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rogers DF, Aursudkij B, Barnes PJ (1989) Effects of tachykinins on mucus secretion on human bronchi in vitro. Eur J Pharmacol 174:283–286

    Article  CAS  PubMed  Google Scholar 

  76. Joos GF, Pauwels RA (2001) Tachykinin receptor antagonists: potential in airways diseases. Curr Opin Pharmacol 1:235–241

    Article  CAS  PubMed  Google Scholar 

  77. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7(5):a016303

    Article  PubMed  PubMed Central  Google Scholar 

  79. Henrot P, Prevel R, Berger P, Dupin I (2019) Chemokines in COPD: from implication to therapeutic use. Int J Mol Sci 20(11):2785

    Article  CAS  PubMed Central  Google Scholar 

  80. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 Axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng E, Wan R, Yang S, Yan Z, Wang S, He W, Zhang Y, Yin H, Chen Z, Liu R (2013) Expression levels of induced sputum IL-8 and IL-10 and drug intervention effects in patients with acute exacerbated COPD complicated with chronic cor pulmonale at high altitude. Exp Ther Med 6(3):747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dunlea DM, Fee LT, McEnery T, McElvaney NG, Reeves EP (2018) The impact of alpha-1 antitrypsin augmentation therapy on neutrophil-driven respiratory disease in deficient individuals. J Inflamm Res 11:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Strzelak A, Ratajczak A, Adamiec A, Feleszko W (2018) Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. Int J Environ Res Public Health 15(5):1033

    Article  PubMed Central  CAS  Google Scholar 

  84. Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165(5):1288–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Banner KH, Press NJ (2009) Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br J Pharmacol 157(6):892–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li H, Zuo J, Tang W (2018) Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol 9:1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cazzola M, Calzetta L, Rogliani P, Matera MG (2016) The discovery of roflumilast for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Discov 11:733–744

    Article  CAS  PubMed  Google Scholar 

  88. Lakshmi SP, Reddy AT, Reddy RC (2017) Emerging pharmaceutical therapies for COPD. Int J Chron Obstruct Pulmon Dis 12:2141–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Phillips JE (2020) Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Front Pharmacol 11:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin C, Frija-Masson J, Burgel PR (2014) Targeting mucus hypersecretion: new therapeutic opportunities for COPD? Drugs 74(10):1073–1089

    Article  CAS  PubMed  Google Scholar 

  91. Polosukhin VV, Cates JM, Lawson WE, Milstone AP, Matafonov AG, Massion PP, Lee JW, Randell SH, Blackwell TS (2011) Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium. J Pathol 224(2):203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang T, Zhou X (2014) Clinical application of expectorant therapy in chronic inflammatory airway diseases (review). Exp Ther Med 7(4):763–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Buels KS, Fryer AD (2012) Muscarinic receptor antagonists: effects on pulmonary function. Handb Exp Pharmacol 208:317–341

    Article  CAS  Google Scholar 

  94. Haarst AV, McGarvey L, Paglialunga S (2019) Review of drug development guidance to treat chronic obstructive pulmonary disease: US and EU. Perspectives 106:1222–1235

    Google Scholar 

  95. Malerba M, Foci V, Patrucco F, Pochetti P, Nardin M, Pelaia C, Radaeli A (2019) Single Inhaler LABA/LAMA for COPD. Front Pharmacol 10:390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Barnes PJ (2010) Inhaled corticosteroids. Pharmaceuticals (Basel) 3(3):514–540

    Article  CAS  Google Scholar 

  97. Solomon GM, Fu L, Rowe SM, Collawn JF (2017) The therapeutic potential of CFTR modulators for COPD and other airway diseases. Curr Opin Pharmacol 34:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raju SV, Solomon GM, Dransfield MT, Rowe SM (2016) Acquired cystic fibrosis transmembrane conductance regulator dysfunction in chronic bronchitis and other diseases of mucus clearance. Clin Chest Med 37(1):147–158

    Article  PubMed  Google Scholar 

  99. Miller BE, Mistry S, Smart K (2015) The pharmacokinetics and pharmacodynamics of danirixin (GSK1325756)—a selective CXCR2 antagonist − in healthy adult subjects. BMC Pharmacol Toxicol 16:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wilson R, Cahn A, Deans A (2013) Safety, tolerability and pharmacokinetics (PK) of single and repeat nebulised doses of a novel phosphoinositide 3-kinase δ inhibitor (PI3Kδ), GSK2269557, administered to healthy male subjects in a phase I study. Eur Respir J 42:729

    Google Scholar 

  101. Brussino L, Heffler E, Bucca C, Nicola S, Rolla G (2018) Eosinophils target therapy for severe asthma: critical points. Biomed Res Int 2018:7582057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mkorombindo T, Dransfield MT (2019) Mepolizumab in the treatment of eosinophilic chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 14:1779–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. https://www.fda.gov/media/114447/download Date accessed 14.09.20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shvetank Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, S., Kanoujia, J., Nagappa, A.N., Pai, K.S.R. (2021). Targeting Molecular and Cellular Mechanisms in Chronic Obstructive Pulmonary Disease. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_5

Download citation

Publish with us

Policies and ethics