Skip to main content
Log in

C7orf10 encodes succinate-hydroxymethylglutarate CoA-transferase, the enzyme that converts glutarate to glutaryl-CoA

  • Rapid Communication
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Glutarate, a side-product in the metabolism of tryptophan and lysine, is metabolized by conversion to glutaryl-CoA by a transferase using succinyl-CoA as a coenzyme donor. The enzyme catalyzing this conversion has not been formally identified. However, a benign form of glutaric aciduria (glutaric aciduria type III) is due to mutations in C7orf10, a putative member of the coenzyme A transferase class III family. In the present work, we show that recombinant human C7orf10 catalyzes the succinyl-CoA-dependent conversion of glutarate to glutaryl-CoA. C7orf10 could use many dicarboxylic acids as CoA acceptors, the best ones being glutarate, succinate, adipate, and 3-hydroxymethylglutarate. Confocal microscopy analysis of CHO cells transfected with a C7orf10-GFP fusion protein indicated that C7orf10 is a mitochondrial protein, in agreement with the presence of a predicted mitochondrial propeptide at its N-terminus. The effect of a missense mutation (p.Arg336Trp) found in the homozygous state in several patients with glutaric aciduria type III and present in the general population at a low frequency was also investigated. The p.Arg336Trp mutation led to the production of insoluble and inactive C7orf10 both in Escherichia coli and in HEK293T cells. These findings indicate that C7orf10 is implicated in the metabolism of glutarate, but possibly also of longer dicarboxylic acids. Homologues of this enzyme are found in numerous bacterial operons comprising also a putative glutaryl-CoA dehydrogenase, indicating that an enzyme with similar specificity exists in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alfares A, Nunez LD, Al-Thihli K et al (2011) Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. Med Genet 48:602–605

    Article  CAS  Google Scholar 

  • Amendt BA, Rhead WJ (1986) The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria: mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts. J Clin Invest 78:205–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett MJ, Pollitt RJ, Goodman SI, Hale DE, Vamecq J (1991) Atypical riboflavin-responsive glutaric aciduria, and deficient peroxisomal glutaryl-CoA oxidase activity: a new peroxisomal disorder. J Inherit Metab Dis 14:165–173

    Article  CAS  PubMed  Google Scholar 

  • Berthold CL, Toyota CG, Richards NG, Lindqvist Y (2008) Reinvestigation of the catalytic mechanism of formyl-CoA transferase, a class III CoA-transferase. J Biol Chem 283:6519–6529

    Article  CAS  PubMed  Google Scholar 

  • Bonthron DT, Brady N, Donaldson IA, Steinmann B (1994) Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase). Hum Mol Genet 3:1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Bouteldja N, Timson DJ (2010) The biochemical basis of hereditary fructose intolerance. J Inherit Metab Dis 33:105–112

    Article  CAS  PubMed  Google Scholar 

  • Danhauser K, Sauer SW, Haack TB et al (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91:1082–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deana R (1992) Substrate specificity of a dicarboxyl-CoA: dicarboxylic acid coenzyme A transferase from rat liver mitochondria. Biochem Int 26:767–773

    CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1116

    Article  CAS  PubMed  Google Scholar 

  • FitzPatrick DR, Hill A, Tolmie JL, Thorburn DR, Christodoulou J (1999) The molecular basis of malonyl-CoA decarboxylase deficiency. Am J Hum Genet 65:318–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francesconi MA, Donella-Deana A, Furlanetto V, Cavallini L, Palatini P, Deana R (1989) Further purification and characterization of the succinyl-CoA:3-hydroxy-3-methylglutarate coenzyme A transferase from rat-liver mitochondria. Biochim Biophys Acta 999:163–170

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Wang M, Paschke R, Rao KS, Frerman FE, Kim JJ (2004) Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions. Biochemistry 43:9674–9684

    Article  CAS  PubMed  Google Scholar 

  • Goodman SI, Stene DO, McCabe ER et al (1982) Glutaric acidemia type II: clinical, biochemical, and morphologic considerations. J Pediatr 100:946–950

    Article  CAS  PubMed  Google Scholar 

  • Goodman SI, Frerman FE (2001) Organic acidemias due to defects in lysine oxidation: 2-ketoadipic academia and glutaric academia. In: Scriver CR, Beaudet AL, Valle D, Childs B, Kinzler KW, Vogelstein B (eds). The metabolic and molecular bases of inherited disease, 8th edn. Chap. 95, pp 2195–2204. McGraw-Hill, New York

  • Gregersen N, Kolvraa S, Rasmussen K et al (1980) Biochemical studies in a patient with defects in the metabolism of acyl-CoA and sarcosine: another possible case of glutaric aciduria type II. J Inherit Metab Dis 3:67–72

    Article  CAS  PubMed  Google Scholar 

  • Knerr I, Zschocke J, Trautmann U et al (2002) Glutaric aciduria type III: a distinctive non-disease? J Inherit Metab Dis 25:483–490

    Article  CAS  PubMed  Google Scholar 

  • Kölker S, Christensen E, Leonard JV et al (2011) Diagnosis and management of glutaric aciduria type I—revised recommendations. J Inherit Metab Dis 34:677–694

    Article  PubMed Central  PubMed  Google Scholar 

  • Sloan JL, Johnston JJ, Manoli I et al (2011) Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet 43:883–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman EA, Strauss KA, Tortorelli S et al (2008) Genetic mapping of glutaric aciduria, type 3, to chromosome 7 and identification of mutations in C7orf10. Am J Hum Genet 83:604–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swigonová Z, Mohsen AW, Vockley J (2009) Acyl-CoA dehydrogenases: dynamic history of protein family evolution. J Mol Evol 69:176–193

    Article  PubMed  Google Scholar 

  • Veiga-da-Cunha M, Hadi F, Balligand T, Stroobant V, Van Schaftingen E (2012) Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. J Biol Chem 287:7246–7255

    Article  CAS  PubMed  Google Scholar 

  • Veiga-da-Cunha M, Verhoeven-Duif NM, de Koning TJ, Duran M, Dorland B, Van Schaftingen E (2013) Mutations in the AGXT2L2 gene cause phosphohydroxylysinuria. J Inherit Metab Dis. 2012 Dec 14 Epub ahead of print

  • Veiga-da-Cunha M, Tyteca D, Stroobant V, Courtoy PJ, Opperdoes FR, Van Schaftingen E (2010) Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids. J Biol Chem 285:18888–18898

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven NM, Huck JH, Roos B et al (2001) Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68:1086–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wamelink MM, Struys EA, Jansen EE et al (2008) Sedoheptulokinase deficiency due to a 57-kb deletion in cystinosis patients causes urinary accumulation of sedoheptulose: elucidation of the CARKL gene. Hum Mutat 29:532–536

    Article  CAS  PubMed  Google Scholar 

  • Wendel U, Bakkeren J, de Jong J, Bongaerts G (1995) Glutaric aciduria mediated by gut bacteria. J Inherit Metab Dis 18:358–359

    Article  CAS  PubMed  Google Scholar 

  • Wiame E, Tyteca D, Pierrot N et al (2009) Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem J 425:127–136

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fonds National de la Recherche Scientifique (FNRS) and Fonds de la Recherche Scientifique Médicale (FRSM), the Center of Excellence des Désordres Inflammatoires dans les Affections Neurologiques (DIANE) programme of the Région Wallonne, the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office and the ASCO industries. Maria Veiga-da-Cunha is Chercheur Qualifié of the Belgian Fonds National de la Recherche Scientifique.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emile Van Schaftingen or Maria Veiga-da-Cunha.

Additional information

Communicated by: K. Michael Gibson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlaire, S., Van Schaftingen, E. & Veiga-da-Cunha, M. C7orf10 encodes succinate-hydroxymethylglutarate CoA-transferase, the enzyme that converts glutarate to glutaryl-CoA. J Inherit Metab Dis 37, 13–19 (2014). https://doi.org/10.1007/s10545-013-9632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-013-9632-0

Keywords

Navigation