Skip to main content

Seaweed Cultivation and Its Biobusiness Status Around the World

  • Chapter
  • First Online:
Bioremediation using weeds

Abstract

Seaweeds or macroalgae, a highly useful and simple type of plants, lack true roots, stems and leaves. Heavy loads on numerous usual resources impose the development of substitute sources to produce significant goods such as food, food additives, feed, fuel, maquillages, and antibiotics. The improvement of large-scale seaweed aquaculture has the prospective to play a significant role in meeting future resource needs. The seaweed is an important character of culture and society

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott IA (1996) Limu: an ethnobotanical study of some Hawaiian seaweed. Pacific Tropical Botanical Garden, Lawai, p 39

    Google Scholar 

  • Abbott IA (1999) Marine Red Algae of the Hawaiian Islands. Bishop Museum Press, Honolulu, 477 pp

    Google Scholar 

  • Abbott IA, Huisman JM (2003) New species, observations, and a list of new records of brown algae (Phaeophyceae) from the Hawaiian Islands. Phycol Res 51:173–185

    Google Scholar 

  • Abbott IA, Huisman JM (2004) Marine green and brown algae of the Hawaiian Islands. Bishop Museum Press, Honolulu, p 259

    Google Scholar 

  • Abhilash KR, Sankar R, Purvaja R, Deepak SV, Sreeraj CR, Krishnan P, Ramesh R (2019) Impact of long-term seaweed farming on water quality: a case study from lk Bay, India. J Coast Conserv 23(2):485–499

    Article  Google Scholar 

  • Alveal K (1986) Experimentos de Cultivoen el Golfo de Arauco, MemoriasSeminarioTaller: Manejo y Cultivo de Gracilariaen Chile. Universidad de Concepcion, Concepcion, pp 166–193

    Google Scholar 

  • Alves RC, Merces PFF, Souza IRA, Alves CMA, Sliva APA, Lima VLM, Correia MTS, Sliva MV, Sliva AG (2016) Antimicrobial activity of seaweeds of Pernambuco, northeastern coast of Brazil. Afr J Microbiol Res 10:312–318

    Article  Google Scholar 

  • Ana RC, Marcelo DC, Susana MC, Artur MS (2018) Minerals from macroalgae origin: Health benefits and risks for consumers. Mar Drugs 16(11):400

    Article  Google Scholar 

  • Anis M, Ahmed S, Hasan MM (2017) Algae as nutrition, medicine and cosmetic: The forgotten history, present status and future trends. World J Pharm Pharm Sci 6(6):1934–1959

    Google Scholar 

  • Arbystrom P, Karlsson J, Nilsson P, Vankooten T, Aolofsson J (2007) Substitution of top predators: effects of pike invasion in Asubarctic lake. Freshw Biol 52:1271–1280

    Article  Google Scholar 

  • Asha A, Rathi JM, Raja DP, Sahayaraj K (2012) Biocidal activity of two marine green algal extracts against third instar nymph of Dysdercuscingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J Biopestic 5:129

    Google Scholar 

  • Baba M, Snoeck R, Pauwels R, De Clercq E (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32(11):1742–1745

    Article  Google Scholar 

  • Babenko AI (1981) Design of seaweed farms in Primorye. Rybn Khozyaistvo 81(10):68–69

    Google Scholar 

  • Badar R, Khan M, Batool B, Shabbir S (2015) Effects of organic amendments in comparison with chemical fertilizer on cowpea growth. Int J Appl Res 1(5):66–71

    Google Scholar 

  • Badreddine A, Saab MAA, Gianni F, Ballesteros E, Mangialajo L (2018) First assessment of the ecological status in the Levant Basin: application of the CARLIT index along the Lebanese coastline. Ecol Indic-J 85:37–47

    Article  Google Scholar 

  • Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128:504–511

    Article  Google Scholar 

  • Batista S, Medina A, Pires MA, Moriñigo MA, Sansuwan K, Fernandes JMO, Valente LMP, Ozório ROA (2016) Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolyzed yeast. Appl Microbiol Biot 100:7223–7238

    Google Scholar 

  • Baweja P, Kumar S, Sahoo D, Levine I (2016) Biology of seaweed. In: Fleurence J, Levine I (eds) seaweed in health and disease prevention. Academic press, pp 41–105

    Google Scholar 

  • Baweja P, Sahoo D, García-Jiménez P, Robaina RR (2009) Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol Res 57(1):45–58

    Article  Google Scholar 

  • Beacham TA, Cole IS, DeDross LS, Raikova S, Chuck CJ, Macdonald J, Allen MJ (2019) Analysis of seaweeds from South West England as a biorefinery feedstock. Appl Sci 9(20):4456

    Article  Google Scholar 

  • Bealy A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J Appl Phycol 5:235–241

    Article  Google Scholar 

  • Bikker P, Van KMM, Van WP, Houweling-Tan B, Scaccia N, Hal JW (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol, 1–15

    Google Scholar 

  • Bird KT, Benson PH (1987) Seaweed cultivation for renewable resources. United States

    Google Scholar 

  • Bixler H, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. https://doi.org/10.1007/s10811-010-9529-3

    Article  Google Scholar 

  • Bjerregaard R, Valderrama D, Radulovich R, Diana J, Capron M, Mckinnie CA, Cedric M, Hopkins K, Yarish C, Goudey CFJ (2016) Seaweed aquaculture for food security, income generation and environmental health, In: Tropical developing countries. World Bank Group, Washington, DC

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the algae: structure and reproduction. Prentice-Hall, Incorporated

    Google Scholar 

  • Boonchum W, Peerapornpisal Y, Kanjanapothi D, Pekkoh J, Pumas C, Jamjai U et al (2011) Antioxidant activity of some seaweed from the Gulf of Thailand. Int J Agric Biol 13:95–99

    Google Scholar 

  • Borgese EM (1980) Seafarm: the story of aquaculture. Harry N. Abrams, Incorporated, New York. ISBN 0-8109-1604-5

    Google Scholar 

  • Brownlee IA, Allen A, Pearson JP (2005) Alginate as a source of dietary fibre. CritAl Rev Food Sci Nutr 45:497–510

    Google Scholar 

  • Buschmann AH, Camus C, Infante J, Neori A, Israel A, Hernández GMC, Critchley AT (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52(4):391–406

    Article  Google Scholar 

  • Buschmann AH, Correa JA, Westermeier R (2001) Red algal farming in Chile: a review. Aquaculture 194:203–220

    Article  Google Scholar 

  • CSM (2018) Commercial Seaweeds Market by Type (Red Seaweeds, Brown Seaweeds, Green Seaweeds), Method of Harvesting (Aquaculture, Wild Harvesting), Form (Liquid, Powder, Flakes), Application (Food, Feed, Agriculture), and Region—Global Forecast to 2023. A report

    Google Scholar 

  • Carigie JS (2010) Seaweeds extract stimuli in plant science and agriculture. J Appl Phycol. https://doi.org/10.1007/s10811-010-9560-4

    Article  Google Scholar 

  • Chapman AS, Stévant P, Larssen WE (2015) Food or fad? Challenges and opportunities for including seaweeds in a Nordic diet. Bot Mar 58(6):423–433

    Article  Google Scholar 

  • Chattopadhyay P, Chatterjee S, Sen SK (2008) Biotechnological potential of natural food-grade biocolourants. Afr J Biotech 7:2972–2985

    Google Scholar 

  • Chen F, Jiang Y (2001) Algae and their biotechnological potential. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Cherry P, O’Hara C, Magee PJ, McSorley EM, Allsopp PJ (2019) Risks and benefits of consuming edible seaweeds. Nutr Rev VR 77:307–329

    Article  Google Scholar 

  • Chopin T (2014) Seaweeds: top mariculture crop, ecosystem service provider. Glob Aquac Advocate 17(5):54–56

    Google Scholar 

  • Ciepiela GA, Godlewska A, Jankowska J (2016) The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition. J Environ Sci Pollut Res 23:2301–2307

    Article  Google Scholar 

  • Cock JM, Peters AF, Coelho SM (2011) Brown algae. Curr Biol 21(15):R573–R575

    Article  Google Scholar 

  • Connor J, Baxter C (1989) Kelp Forests. Monterey Bay Aquarium

    Google Scholar 

  • Cottier-Cook EJ, Nagabhatla N, Badis Y, Campbell ML, Chopin T, Dai W, Fang J, He P, Hewitt, CL, Rebours C, Shen H, Stentiford GD, Yarish C, Wu H, Yang X, Zhang J, Zhou Y, Gachon CMM (2016) Policy brief: safeguarding the future of the global seaweed aquaculture industry. UNU-INWEH and SAMS

    Google Scholar 

  • Critchley AT (1993) Gracilaria (Gracilariales, Rhodophyta): an economically important Agarophyte, seaweed cultivation and Marine Ranching, Kanagawa International Fisheries Training Center, pp 98–113, JICA

    Google Scholar 

  • De Clercq E (1996) Chemotherapy of human immunodeficiency virus (HIV) infection: anti-HIV agents targeted at early stages in the virus replicative cycle. Biomed Pharmacother 50:207–215

    Article  Google Scholar 

  • De Clercq E (2000) Current lead natural products for chemotherapy oh human immunodeficiency virus (HIV) infection. Med Res Rev 20:323–349

    Article  Google Scholar 

  • Delaney, A., Frangoudes, K. and Ii, S. A. 2016. Society and seaweed: understanding the past and present. In Seaweed in health and disease prevention, pp. 7–40, Academic Press

    Google Scholar 

  • Dembitsky VM, Rezankova H, Rezanka T, Hanus LO (2003) Variability of the fatty acids of the marine green algae belonging to the genus Codium. Biochem Syst Ecol 31:1125–1145

    Article  Google Scholar 

  • Dhargalkar VK, verlecar XN (2009) Southern ocean seaweeds: a resource for exploration in food and drugs. Aquaculture 287:229–242

    Article  Google Scholar 

  • Divya K, Roja MN, Padal SB (2015) Effect of seaweed liquid fertilizer on Sargassum wightii on germination growth and productivity of brinjal. Int J Adv Res Sci, Eng Technol 2:868–871

    Google Scholar 

  • Douglas S (2002) The highly reduced genome of an enslaved algal nucleus. Nature 410(6832):1091–1096

    Article  Google Scholar 

  • Duarte CM, Wu J, Xiao X, Bruhn A, Jensen DK (2017) Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci 4:1–8

    Article  Google Scholar 

  • Einav R, Israel A (2007) Seaweeds on the abrasion platforms of the intertidal zone Eastern Mediterranean shores. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 193–207

    Google Scholar 

  • El-kassas HY, Aly-Eldeen MA, Gharib SM (2016) Green synthesis of iron oxide nanoparticle using two selected brown seaweed: characterization and application for lead bioremediation. Acta Ocean Sin 35:89–98

    Article  Google Scholar 

  • FAO (Fisheries and Aquaculture Department) (2016a) FAO yearbook of fishery and aquaculture statistics summary tables, 26–28

    Google Scholar 

  • FAO (2016b) The State of World Fisheries and Aquaculture 2016 (SOFIA). A report

    Google Scholar 

  • Fan X, Han L, Zheng N (1993) The analysis of nutrient components in some Chinese edible seaweeds. Chin J Mar Drugs 12 (4):32–38

    Google Scholar 

  • Farid Y, Etahiri S, Assobhei O (2009) Activitéantimicrobienne des algues marines de la laguned’Oualidia (Maroc): Criblage et optimisation de la période de la récolte. J Appl Biosci 24:1543–1552

    Google Scholar 

  • Ferdouse F, Holdt SL, Smith R, Murua P, Yang Z, (2018) The global status of seaweed production, trade and utilization. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–38

    Article  Google Scholar 

  • Fleurence J, Moranc-ais M, Dumay J, Decottignies P, Turpin V, Munier M, Bueno NG, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61

    Article  Google Scholar 

  • Forster J, Radulovich R (2015) Seaweed and food security. In Tiwari BK, Troy DJ (eds) Seaweed sustainability: Food and non-food application. Elsevier, pp 289–313

    Google Scholar 

  • Franklin D (2004) New research shows how microscopic diatoms remove carbon dioxide from the atmosphere and may help keep the planet from overheating. Smithsonian Magazine, Gas Guzzlers

    Google Scholar 

  • G.A.A. (Global Aquaculture Alliance) (2017) The current state of seaweed: Part II. Seaweed aquaculture benefits

    Google Scholar 

  • García-Sartal C, Romarís-Hortas V, del Carmen Barciela-Alonso M, Moreda-Piñeiro A, Dominguez-Gonzalez R, Bermejo-Barrera P (2011) Use of an in vitro digestion method to evaluate the bioaccessibility of arsenic in edible seaweed by inductively coupled plasma-mass spectrometry. Microchem J 98(1):91−96

    Google Scholar 

  • Ganesan M, Trivedi N, Gupta V, Madhav SV, Reddy CR, Levine IA (2019) Seaweed resources in India- current status of diversity and cultivation: prospects and challenges. Bot Mar 62(5):463–482

    Article  Google Scholar 

  • Garrow JS, James WPT, Ralph A (1997) Human nutrition and dietetics. Churchill Livingstone, London

    Google Scholar 

  • Glenn EP, Doty MS (1990) Growth of the seaweeds Kappaphycusalvarezii, K. striatum and Eucheuma denticulatum, as affected by environment in Hawaii. Aquaculture 84:245–255

    Article  Google Scholar 

  • Gouveia L, Batista AP, Miranda A, Empis J, Ray-mundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg Technol 8:433–436

    Article  Google Scholar 

  • Guiry M (2009) Seaweed site. Seaweed Web Site. National University of Ireland, Galway

    Google Scholar 

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51(5):821–837

    Google Scholar 

  • Hamann MT, Otto C, Scheuer PJ, Dunbar DC (1996) Kahalalides: bioactive peptides from marine molluscsElysia rufescens and the green algae Bryopsis sp. J Org Chem 61:6594–6600

    Article  Google Scholar 

  • Harrison M (2008). Edible Seaweeds around the British Isles. Wild Food Schl 2011:11

    Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  Google Scholar 

  • Hasselstrom L, Visch W, Gröndahl F, Nylund GM, Pavia H (2018) The impact of seaweed cultivation on ecosystem services—a case study from the west coast of Sweden. Mar Pollut Bull 133:53–64. https://doi.org/10.1016/j.marpolbul.2018.05.005

    Article  Google Scholar 

  • Haws MC, McDermid KJ, Martin KJ (2019) Seaweed resources of the Hawaiian Islands. Bot Mar 62(5):443–462

    Article  Google Scholar 

  • Hirata H, Kohirata E (1993) Culture of sterile Ulva sp. in Fish Farm. Isr J Aquac Bamidgeh 44:164–1168

    Google Scholar 

  • Hoiby N (2002) Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibros 1:249–254

    Article  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  Google Scholar 

  • Huang JM, Rorrer GL (2003) Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioprotect. Biotechnol Prog 19:418–427

    Article  Google Scholar 

  • Ireland CM, Copp BR, Foster MP, McDonald LA, Radisky DC, Swersey JC (1993) Biomedical potential of marine natural products. Marine Biotechnology, Pharmaceutical, and Bioactive Natural Products, pp 1–43, Plenum Press N

    Google Scholar 

  • Ishii T, Nagamine T, Nguyen BCQ, Tawata S (2017) Insecticidal and repellent activities of laurinterol from the Okinawan red alga Laurencia nidifica. Rec Nat Prod 11:63–68

    Google Scholar 

  • Israel Á, Einav R (2017) Alien seaweeds in the Levant basin (Eastern Mediterranean Sea), with special emphasis to the Israeli shores. Isr J Plant Science 64(1–2):99–110

    Google Scholar 

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Rev Int 5:101–144

    Article  Google Scholar 

  • Johnson B, Narayanakumar R, Nazar AA, Kaladharan P, Gopakumar G (2017) Economic analysis of farming and wild collection of seaweeds in Ramanathapuram District, Tamil Nadu. Indian J Fish 64(4):94–99

    Article  Google Scholar 

  • Kaliaperumal N (2003) Products from seaweeds. SDMRI Res Publ 3:33–42

    Google Scholar 

  • Kasim WA, Hamada EAM, Shama E-D, Eskander SK (2015) Influence of seaweed extract on the growth, some metabolic activities and yield of wheat grown under drought stress. Int J Agron Agric Res 7:173–189

    Google Scholar 

  • Kavale MG, Kazi MA, Bagal PU, Singh VV, Behera DP (2018) Food value of Pyropiavietnamensis (Bangiales, Rhodophyta) from India. Indian J Geo Mar Sci 47:402–408

    Google Scholar 

  • Kent S, Barnes R (2001) The Invertebrates: A Synthesis. Wiley-Blackwell, p 41

    Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28(4):386–399

    Article  Google Scholar 

  • Kilinç B, Cirik S, Turan G, Tekogul H, Koru E (2013) Seaweeds for food and industrial applications. Food Industry, 735–748

    Google Scholar 

  • Kim JK, Charles YEKH, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem service. Algae 32(1):1–13

    Article  Google Scholar 

  • Kolender AA, Matulewicz MC, Cerezo AS (1995) Structural analysis of antiviral sulfated α-D-(1 → 3)-linked mannans. Carbohyd Res 273(2):179–185

    Article  Google Scholar 

  • Krishnamurthy V (2005) Seaweeds-Wonder plants of the sea. Aquaculture Foundation of India, Chennai, 29

    Google Scholar 

  • Kumar G, Sahoo D (2011) Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. J Appl Phycol 23(2):251–255

    Article  MathSciNet  Google Scholar 

  • Kumar KV, Tandel JNH, Kumar GM, Patel MR, Kumar JT (2016) Seaweed cultivation in India: a new opportunity for revenue generation. Adv Life Sci 5(7):2487–2491

    Google Scholar 

  • Levine I (2016) Algae: a way of life and health. In: Fleurence J, Levine IA (eds) Seaweed in Health and Disease Prevention. Elsevier Academic Press, London, pp 1–5

    Google Scholar 

  • Liang S, Liu X, Cheb F, Chen Z (2004) Current microalgal health food R and D activities in China. Hydrobiologia 512:45–48

    Article  Google Scholar 

  • Lincoln RA, Strupinski KAZ, Walker JM (1991) Bioactive compounds from algae. Life Chem Rep 8(97):183

    Google Scholar 

  • Lipkin Y, Friedlander M (1998) The seaweed resources of Israel and other eastern Mediterranean countries. In: Critchley ST, Ohno M (eds) Seaweed resources of the World. Yokosuka, Japan, International Cooperation Agency, pp 156–163

    Google Scholar 

  • Lobban SC, Harrison JP (1994) Seaweeds Ecology and Physiology. Cambridge University Press, Cambridge. p 386

    Google Scholar 

  • Loureiro R, Gachon CM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206(2):489–492

    Article  Google Scholar 

  • Mac Monagail M, Cornish L, Morrison L, Araújo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52(4):371–390

    Article  Google Scholar 

  • Malhotra R, Ward M, Bright H, Priest R, Foster MR, Hurle M, Bird M (2003) Isolation and characterisation of potential respiratory syncytial virus receptor (s) on epithelial cells. Microbes Infect 5(2):123–133

    Article  Google Scholar 

  • Mansuya P, Aruna P, Sridhar S, Kumar S, & Babu S (2010) Antibacterial activity and qualitative phytochemical analysis of selected seaweeds from Gulf of Mannar region. J Exp Sci

    Google Scholar 

  • Mantri VA, Kavale MG, Kazi MA (2020) Seaweed biodiversity of India: reviewing current knowledge to identify gaps, challenges, and opportunities. Diversity 12(1):13

    Article  Google Scholar 

  • Marcus JB (2005) Culinary applications of Umami. Food Technol 59:24–30

    Google Scholar 

  • Mathew L, Burney M, Gaikwad A, Nyshadham P, Nugent EK, Gonzalaz AO, Smith JA (2017) Preclinical evaluation of safety of fucoidan extracts from Undaria pinnatifida and Fucusvesiculosus for use in cancer treatment. Int J Cancer 16:572–584

    Google Scholar 

  • McCance RA, Widdowson EM, Holland B (1993) McCance and Widdowson’s Composition of Foods. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • McDermid KJ, Abbott IA (2006) Deep subtidal marine plants from the Northwestern Hawaiian Islands: new perspectives on biogeography. Atoll Res Bull 543:525–532

    Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:512–524

    Article  Google Scholar 

  • McDermid KJ, Stuercke B, Haleakala OJ (2005) Total dietary fibre content in Hawaiian marine algae. Bot Mar 48:437–440

    Article  Google Scholar 

  • McHug JD (2003) A Guite to the Seaweed Industry. FAO Fisheries Technical Papers, Rome-Italy

    Google Scholar 

  • McKim JM (2014) Food additive carrageenan: part I: a critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 44:211–243

    Google Scholar 

  • Mendes GDS, Soares AR, Martins FO, Albuquerque MCM, Costa SS, Yoneshigue-Valentin Y, Romanos MTV (2010) Antiviral activity of the green marine alga Ulva fasciata on the replication of human metapneumovirus. Rev Do Inst Med Trop São Paulo 52(1):03–10

    Article  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotechnol 17:477–489

    Article  Google Scholar 

  • Mirparsa T, Ganjali HR, Dahmardeh M (2016) The effect of biofertilizers on yield and yield components of sunflower oilseeds and nut. Int J Agric Biosci 5:46–49

    Google Scholar 

  • Mohanraju R, Tanushree P (2012) Seaweed distribution in South and Little Andaman. Ecology of faunal communities on the Andaman and Nicobar Islands. Springer, Berlin, Heidelberg, pp 149–158

    Chapter  Google Scholar 

  • Mooney PA, Van Staden J (1984) Seasonal changes in the levels of endogenous cytokinins in Sargassum heterophyllum (Phaeophyceae). Bot Mar 27(9)

    Google Scholar 

  • Moussavou G, Kwak DH, Obiang-Obonou BW, Maranguy CAO, Dinzouna-Boutamba SD, Lee DH, Choo YK (2014) Anticancer effects of different seaweeds on human colon and breast cancers. Mar drugs 12(9):4898–4911

    Google Scholar 

  • Neori A, Cohen I, Gordin H (1991) Ulva Lactuca Biofilters for Marine Fishpond Effluents. 2. growth rate, Yield and CN Ratio. Bot Mar 6:483–489

    Google Scholar 

  • Noguchi T, Matsui T, Miyazawa K, Asakawa M, Iijima N, Shida Y (1994) Poisoning by the red alga “Ogonori” (Gracilariaverrucosa) on the Nojima coast Yokohama, Kanagawa Prefecture, Japan. Toxicon 32:1533–1538

    Article  Google Scholar 

  • Norziah MH, Ching CY (2000) Nutritional composition of edible seaweed Gracilaria changgi. Food Chem 68:69–76

    Article  Google Scholar 

  • Odom RB, James WD, Berger TG (2000) Andrews’ diseases of the skin: clinical dermatology. WB Saunder, Philadelphia, pp 266–283

    Google Scholar 

  • Pacholczak A, Szydło W, Jacygrad E, Federowicz M (2012) Effect of auxins and the biostimulator AlgaminoPlant on rhizogenesis in stem cuttings of two dogwood cultivars (Cornus alba ‘Aurea’and ‘Elegantissima’). Acta Sci Pol, Hortorum Cultus 11(2):93–103

    Google Scholar 

  • Paul J (2014) Influence of seaweed liquid fertilizer of gracilaria dura (AG.) J. AG. (Red seaweed) on Vigna radiata (l.) r. wilczek. in Thoothukudi, Tamil Nadu, India

    Google Scholar 

  • Paul MA, Christopher IR, Gill R, Campbell I, Rowland R (2007) Nutritional value of edible seaweeds international life sciences institute. Special Paper 1:535

    Google Scholar 

  • Perez J, Falque E, Dominguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar drugs 14:1–38

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FME, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res 45:11–36

    Article  Google Scholar 

  • Peteiro C, Sánchez N, Dueñas-Liaño C, Martínez B (2014) Open-sea cultivation by transplanting young fronds of the kelp Saccharina latissima. J Appl Phycol 26(1):519–528

    Article  Google Scholar 

  • Ponce NM, Pujol CA, Damonte EB, Flores ML, Stortz CA (2003) Fucoidans from the brown seaweed Adenocystisutricularis: extraction methods, antiviral activity and structural studies. Carbohyd Res 338(2):153–165

    Article  Google Scholar 

  • Radulovich R, Neori A, Valderrama D, Reddy CRK, Cronin H, Forster J (2015) Farming of seaweeds. In: Seaweed Sustainability, Academic Press, pp 27–59

    Google Scholar 

  • Rao PS, Mantri VA (2006) Indian seaweed resources and sustainable utilization: scenario at the dawn of a new century. Curr Sci, 164–174

    Google Scholar 

  • Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Hovelsrud G (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26(5):1939–1951

    Article  Google Scholar 

  • Renn D (1997) Biotechnology and the red seaweeds polysaccharide industry: Status, needs and prospects. Trends Biotechnol 15:9–14

    Article  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis (No. PNNL-19944). Pacific Northwest National Lab (PNNL). Richland, WA (United States)

    Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Biores Technol 98(17):3344–3353

    Article  Google Scholar 

  • Rose C (2016) The history of Seaweed and the way to achieve seaweed benefits. A report

    Google Scholar 

  • Rowland IR, Paul M, Christopher IRG, Mariel B, Campbell R (2007) Nutritional value of edible seaweeds. Nutr Rev 65(12):535–543

    Article  Google Scholar 

  • Salehi B, Sharifi-Rad J, Seca AM, Pinto DC, Michalak I, Trincone A, Martins N (2019) Current trends on seaweeds: looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 24(22):4182

    Article  Google Scholar 

  • Sanchez MDI, Lopez HJ, Paseiro LP, Lopez CJ (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 285:439–444

    Article  Google Scholar 

  • Santelices B, Doty M (1989) A Review of Gracilaria Farming. Aquaculture 78:95–133

    Article  Google Scholar 

  • Santelices B, Ugarte R (1990) Ecological differences among Chilean populations of commercial Gracilaria. J Appl Phycol 2:17–26

    Article  Google Scholar 

  • Sathya B, Indu H, Seenivasan R, Geetha S (2010) Influence of seaweed liquid fertilizer on the growth and biochemical composition of legume crop, Cajanus cajan (L.) Mill sp. J Phytol 2:50–63

    Google Scholar 

  • Shanmugam M, Mody KH, Ramavat BK, Murthy A, Siddhanta AK (2002) Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian J Mar Sci 31:33–38

    Google Scholar 

  • Sharma HS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and the use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26(1):465–490

    Article  Google Scholar 

  • Sharma N, Tyagi N, Sadish SK (2017) Gelidiellaacrosa: A Pricis. Int J Pharm 8(4):20–24

    Google Scholar 

  • Sharma P (2014) Algae used as medicine and food-a short review. J Pharm Sci Res 6(1):33

    Google Scholar 

  • Shi X, Qi M, Tang H, Han X (2015) Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms. Estuar Coast Shelf Sci 163:36–43

    Article  Google Scholar 

  • Silva PC, Menez EG, Moe RL (1987) Catalogue of the benthic marine algae of the Philippines. Smithsonian Contributions to the Marine Sciences

    Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16(4):245–262

    Article  Google Scholar 

  • Soegiarto A (1990) Utilization and farming of seaweeds in Indonesia. In: Culture and use of algae in Southeast Asia. Proceedings of the Symposium on Culture and Utilization of Algae in Southeast Asia. Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines, 8–11 December 1981, pp 9–19

    Google Scholar 

  • Stekoll MS (2019) The seaweed resources of Alaska. Bot Mar 62(3):227–235

    Article  Google Scholar 

  • Straub S, Thomsen M, Wernberg, T (2016) The dynamic biogeography of the Anthropocene: the speed of recent range shifts in seaweeds. In: Hu ZM, Fraser C (eds) Seaweed Phylogeography. Springer, Amsterdam, pp 63–93

    Google Scholar 

  • Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod

    Google Scholar 

  • Sumedha C, Pati S, Dash BP, Chatterji A (2016) Seaweeds–promising organic fertilizers

    Google Scholar 

  • Tandel KV, Joshi NH, Tandel GM, Patel M, Tandel JT (2016) Seaweed cultivation in India, a new opportunity of revenue generation. Advances 5:2487–2491

    Google Scholar 

  • Temple E, Bomke AA (1988) Effect of kelp (MacrocysticIntegrifolia) on soil chemical properties and crop response. Biotechnology 6:2746–2751

    Google Scholar 

  • Thivy F (1964) Seaweed manure for perfect soil and smiling field. Sal Research India 1:1–14

    Google Scholar 

  • Titlaynov EA, Titlyanova TV, Skriptsova AV (1995) Experimental field cultivation of the unattached form of Gracilariaverrucosa in Russia. Russ J Mar Biol 21(2):124–134

    Google Scholar 

  • Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36(4):227–242

    Article  Google Scholar 

  • Tiwari BK, Troy DJ, (2015). Seaweed sustainability: food and non-food applications

    Google Scholar 

  • Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy CRK, Lali AM, Jha B (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:307–328

    Article  Google Scholar 

  • Tseng CK (1981) Marine phycoculture in China. Proc Int Seaweed Symp 10:123–152

    Google Scholar 

  • Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13(4):375–380

    Article  Google Scholar 

  • Tuhy L, Samoraj M, Baśladyńska S, Chojnacka K (2015) New micronutrient fertilizer biocomponents based on seaweed biomass. Pol J Environ Stud 24(5):2213–2221

    Article  Google Scholar 

  • Uju W, Goto AT, Kamiya M (2015) Great potency of seaweed waste biomass from the carrageenan industry for bioethanol production by peracetic acid-ionic liquid pretreatment. Biomass Bioenerg 81:63–69

    Article  Google Scholar 

  • Veeragurunathan V, Prasad K, Vizhi JM, Singh N, Meena R, Mantri VA (2019) Gracilariadebilis cultivation, agar characterization and economics: bringing new species in the ambit of commercial farming in India. J Appl Phycol 31(4):2609–2621

    Article  Google Scholar 

  • Venkatesan J, Anil S, Kim SK (2017) Introduction to Seaweed Polysaccharides. In: Seaweed Polysaccharides. Elsevier, pp 1–9

    Google Scholar 

  • White WL, Wilson P (2015) World seaweed utilization. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability: food and nonfood applications. Academic Press, London, p 7

    Google Scholar 

  • Wozniak M, Bradtke KM, Darecki M, Kręzel A (2016) Empirical model for phycocyanin concentration estimation as an indicator of cyanobacterial bloom in the optically complex coastal waters of the Baltic Sea. Remote Sens 8(3):212

    Article  Google Scholar 

  • Wu AM, Wu JH, Watkins WM, Chen CP, Song SC, Chen YY (1998) Differential binding of human blood group Sd (a+) and Sd (a−) Tamm-Horsfall glycoproteins with Dolichosbiflorusand Viciavillosa-B4 agglutinins. FEBS Lett 429(3):323–326

    Article  Google Scholar 

  • Yang LE, Lu QQ, Brodie J (2017) A review of the bladed Bangiales (Rhodophyta) in China: history, culture and taxonomy. Eur J Phycol 52:1–13

    Article  Google Scholar 

  • Zamani S, Khorasaninejad S, Kashefi B (2013) The important role of seaweeds of some characters of plant. Int J Agric Crop Sci 5(16):1789

    Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11(4):369–376

    Article  Google Scholar 

  • Zhang J (2018) Seaweed industry in China. Innovation Norway China. https://www.submariner-network.eu/images/grass/Seaweed_Industry_in_China.pdf

  • Zhu W, Ooi VEC, Chan PKS, Ang PO, Jr (2003). Inhibitory effect of extracts of marine algae from HongKong against Herpes simplex viruses. In: Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds), Proceeding of the 17th international Seaweed symposium. Oxford University Press, Oxford, pp 159–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravi Kant Bhatia or Arvind Kumar Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathour, R.K., Mehta, S., Sharma, P., Bhatia, R.K., Bhatt, A.K. (2021). Seaweed Cultivation and Its Biobusiness Status Around the World. In: Pant, D., Bhatia, S.K., Patel, A.K., Giri, A. (eds) Bioremediation using weeds. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-33-6552-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6552-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6551-3

  • Online ISBN: 978-981-33-6552-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics