Skip to main content
Log in

Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

This evaluation focuses on polymorphisms of the cytochrome-P450 (CYP) isoenzymes 2C9, 2C19 and 2D6 and their association with plasma concentrations within a typical clinical setting. Side effects and treatment response were analysed in an exploratory approach in poor and ultra-rapid metabolisers.

Patients and methods

We analysed 136 Caucasian depressed inpatients treated with amitriptyline, citalopram, clomipramine, doxepin, fluvoxamine, mirtazapine, paroxetine, sertraline and venlafaxine, who underwent weekly plasma concentration measurements, assessment of the severity of illness and side effects during their stay in the hospital. Patients were genotyped with respect to CYP2C9 alleles *1 and *2, the CYP2C19 alleles *1, *2 and *3 and the CYP2D6 alleles *1 to *9 and CYP2D6 gene duplication.

Results

CYP2D6 poor metaboliser genotype and co-medication with inhibitors of CYP2D6 were associated with higher plasma concentrations than the drug-specific median plasma concentration when normalised to dose; plasma concentrations of CYP2C19 extensive metabolisers and smokers were significantly lower than the drug-specific median. Five of the six CYP2D6 poor metabolisers experienced side effects. Response was not associated with plasma concentrations above or below the lower limit of a presumed therapeutic range.

Conclusion

These data indicate a significant influence of the CYP2D6 genotype, minor influence of the CYP2C19 genotype and no influence of the CYP2C9 genotype on plasma concentrations of patients taking mainly second-generation antidepressants. Because of the good tolerability of the latter and the flat dose–response relationship, genotyping should only be considered in cases of suspected side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Touw DJ (1997) Clinical implications of genetic polymorphisms and drug interactions mediated by cytochrome P-450 enzymes. Drug Metabol Drug Interact 14:55–82

    CAS  PubMed  Google Scholar 

  2. Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Mörike K, Stuven T, Eichelbaum M (1998) Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 8:15–26

    CAS  PubMed  Google Scholar 

  3. Bertilsson L, Dahl ML, Tybring G (1997) Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr Scand 96[Suppl 39]1:14–21

    Google Scholar 

  4. Dahl ML, Bertilsson L, Nordin C (1996) Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology 123:315–319

    Google Scholar 

  5. Bluhm RE, Wilkinson GR, Shelton R, Branch RA (1993) Genetically determined drug-metabolizing activity and desipramine-associated cardiotoxicity: a case report. Clin Pharmacol Ther 53:89–95

    CAS  PubMed  Google Scholar 

  6. Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E (1997) Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 51:395–398

    Article  CAS  PubMed  Google Scholar 

  7. Meyer UA (2000) Pharmacogenetics and adverse drug reactions. Lancet 356:1667–1671

    Article  CAS  PubMed  Google Scholar 

  8. Kidd RS, Straughn AB, Meyer MC, Blaisdell J, Goldstein JA, Dalton JT (1999) Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 9:71–80

    CAS  PubMed  Google Scholar 

  9. Meyer UA, Amrein R, Balant LP, Bertilsson L, Eichelbaum M, Guentert TW, Henauer S, Jackson P, Laux G, Mikkelsen H, Peck C, Pollock BG, Priest R, Sjoqvist F, Delini-Stula A (1996) Antidepressants and drug-metabolizing enzymes—expert group report. Acta Psychiatr Scand 93:71–79

    Google Scholar 

  10. Kirchheiner J, Brøsen K, Dahl ML, Gram LF, Kasper S, Roots I, Sjoqvist F, Spina E, Brockmöller J (2001) CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 104:173–192

    CAS  PubMed  Google Scholar 

  11. World Health Organization (1992) International statistical classification of diseases and related health problems, 1989 revision. World Health Organization, Geneva

  12. National Institutes of Mental Health (1976) CGI. Clinical global impressions. In: Guy W (ed) ECDEU Assessment manual for psychopharmacology, rev. edn. National Institutes of Mental Health, Rockville, pp 217–222

  13. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiat 23:56–62

    CAS  Google Scholar 

  14. Ulrich S, Schrödter I, Partscht G, Baumann P (2000) Therapeutisches Drug Monitoring von psychotropen Pharmaka. Psychopharmakotherapie 7:2–14

    Google Scholar 

  15. Lingjaerde O, Ahlfors UG, Bech P, Dencker SJ, Elgen K (1987) The UKU side effect rating scale. A new comprehensive rating scale for psychotropic drugs and a cross-sectional study of side effects in neuroleptic-treated patients. Acta Psychiatr Scand Suppl 334:1–100

    CAS  PubMed  Google Scholar 

  16. Frahnert C, Rao ML, Grasmäder K (2003) Determination of eighteen antidepressants, four antipsychotics and active metabolites in serum by liquid chromatography: a simple tool for therapeutic drug monitoring. J Chromatogr B 794:35–47

    Article  CAS  Google Scholar 

  17. Härtter S, Hiemke C (1992) Column switching and high-performance liquid chromatography in the analysis of amitriptyline, nortriptyline and hydroxylated metabolites in human plasma or serum. J Chrom Biomed Appl 587:273–282

    Article  Google Scholar 

  18. Härtter S, Wetzel H, Hiemke C (1992) Automated determination of fluvoxamine in human plasma by column switching high-performance liquid chromatography. Clin Chem 38:2082–2086

    PubMed  Google Scholar 

  19. Härtter S, Hermes B, Szegedi A, Hiemke C (1994) Automated determination of paroxetine and its main metabolite by column switching and on-line high-performance liquid chromatography. Therap Drug Monit 16:400–406

    Google Scholar 

  20. Lewin HA, Stewart-Haynes JA (1992) A simple method for DNA extraction from leukocytes for use in PCR. Biotechniques 13:522–524

    CAS  PubMed  Google Scholar 

  21. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422

    PubMed  Google Scholar 

  22. Brockmöller J, Rost KL, Gross D, Schenkel A, Roots I (1995) Phenotyping of CYP2C19 with enantiospecific HPLC-quantification of R- and S-mephenytoin and comparison with the intron4/exon5 G→A-splice site mutation. Pharmacogenetics 5:80–88

    PubMed  Google Scholar 

  23. Broly F, Marez D, Sabbagh N, Legrand M, Millecamps S, Lo Guidice JM, Boone P, Meyer UA (1995) An efficient strategy for detection of known and new mutations of the CYP2D6 gene using single strand conformation polymorphism analysis. Pharmacogenetics 5:373–384

    CAS  PubMed  Google Scholar 

  24. Wen L (2001) Two-step cycle sequencing improves base ambiguities and signal dropouts in DNA sequencing reactions using energy-transfer-based fluorescent dye terminators. Mol Biotechnol 17:135–142

    Article  CAS  PubMed  Google Scholar 

  25. Steen VM, Andreassen OA, Daly AK, Tefre T, Borresen AL, Idle JR, Gulbrandsen AK (1995) Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology Pharmacogenetics 5:215–223

  26. Løvlie R, Daly AK, Molven A, Idle JR, Steen VM (1996) Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett 392:30–34

    CAS  PubMed  Google Scholar 

  27. Taube J, Halsall D, Baglin T (2000) Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 96:1816–1819

    CAS  PubMed  Google Scholar 

  28. Xie HG, Stein CM, Wilkinson GR, Flockhart DA, Wood AJ (1999) Allelic, genotypic and phenotypic distributions of S-mephenytoin 4′-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 9:539–549

    Google Scholar 

  29. Hiemke C, Härtter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28

    CAS  PubMed  Google Scholar 

  30. Sindrup SH, Brøsen K, Hansen GJ, Aaes-Jørgensen T, Overø KF, Gram LF (1993) Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 15:11–17

    CAS  PubMed  Google Scholar 

  31. Chiba K, Kobayashi K (2000) Antidepressants. In: Levy R et al. (eds) Metabolic drug interactions. Lippincott, Williams and Wilkins, Philadelphia, pp 233–243

  32. Sindrup SH, Brøsen K, Gram LF (1992) The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 51:278–287

    Google Scholar 

  33. Dahl ML, Voortman G, Alm C, Elwin CE, Delbressine L, Vos R, Bogaards JJP, Bertilson L (1997) In vitro and in vivo studies on the disposition of mirtazapine in humans. Clin Drug Invest 13:37–46

    CAS  Google Scholar 

  34. Ereshefsky L, Dugan D (2000) Review of the pharmacokinetics, pharmacogenetics and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety 12[Suppl 1]:30–44

    Google Scholar 

  35. Rotzinger S, Bourin M, Akimoto Y, Coutts RT, Baker GB (1999) Metabolism of some “second”- and “fourth”-generation antidepressants: iprindole, viloxazine, bupropion, mianserin, maprotiline, trazodone, nefazodone, and venlafaxine. Cell Mol Neurobiol 19:427–442

    Article  CAS  PubMed  Google Scholar 

  36. Lohmann PL, Rao ML, Ludwig M, Griese EU, Zanger UM, Mörike K, Maier W, Bagli M (2001) Influence of CYP2D6 genotype and medication on the sparteine metabolic ratio of psychiatric patients. Eur J Clin Pharmacol 57:289–295

    Article  CAS  PubMed  Google Scholar 

  37. Sachse C, Brockmöller J, Hildebrand M, Müller K, Roots I (1998) Correctness of prediction of the CYP2D6 phenotype confirmed by genotyping 47 intermediate and poor metabolisers of debrisoquine. Pharmacogenetics 8:181–185

    CAS  PubMed  Google Scholar 

  38. Preskorn SH (1993) Pharmacokinetics of antidepressants: why and how they are relevant to treatment. J Clin Psychiatry 54[Suppl]:14–34

    Google Scholar 

  39. Lessard E, Yessine MA, Hamelin BA, O’Hara G, LeBlanc J, Turgeon J (1999) Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 9:435–443

    CAS  PubMed  Google Scholar 

  40. Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, Pho M, Xiao V, Ryder TB, Liu WW, Teiling C, Wedlund PJ (2000) Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 20:246–251

    Article  CAS  PubMed  Google Scholar 

  41. APA Task Force on the Use of Laboratory Tests in Psychiatry (1985) Tricyclic antidepressants—blood level measurements and clinical outcome: an APA Task Force report. Am J Psychiatry 142:155–162

    PubMed  Google Scholar 

  42. Rao ML, Bagli M, Papassotiropoulos A, Sobanski A, Deister A (1999) Zur klinischen Relevanz von Paroxetin-Serumkonzentrationen. Psychopharmakotherapie 6:158–160

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for expert laboratory assistance by Ms. C. Frahnert, A. Rieger-Gies and S. Schmitz. The study was kindly supported by the Competence Network Depression of the German Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Luise Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasmäder, K., Verwohlt, P.L., Rietschel, M. et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 60, 329–336 (2004). https://doi.org/10.1007/s00228-004-0766-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-004-0766-8

Keywords

Navigation