Skip to main content

Aptamers for the Diagnosis of Infectious Diseases

  • Chapter
  • First Online:
Aptamers for Medical Applications
  • 571 Accesses

Abstract

Nowadays, infectious diseases have been considered as life-threatening concerns worldwide. Traditional methods based on clinical features and epidemiological information have been successfully applied in infection diagnosis. However, these methods are either relatively complicated or time-consuming. Aptamer, a specific DNA/RNA binder, can serve as field-deployable sensors (termed aptasensors), and is thus highly promising to construct point-of-use tools for infection diagnosis. In this chapter, we will present the basic features of most prevalent infectious diseases and the efforts to obtain aptamers against their pathogen counterparts. Then, we will discuss the design strategies and working principles of typical aptasensors, nanomaterial-involved aptasensors, and microfluidics-integrated aptasensors for typical infectious diseases such as cholera, tuberculosis, anthrax, malaria, viral hepatitis, AIDS and COVID-19, as well as their application for infectious diseases profiling and cellular monitoring. It can be anticipated that aptamers will play a pivotal role in the future development of advanced diagnostic techniques of intricate infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park KS (2018) Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 102:179–188

    Article  CAS  PubMed  Google Scholar 

  3. Morens DM, Fauci AS (2013) Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 9(7):e1003467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Molefe P, Masamba P, Oyinloye B, Mbatha L, Meyer M, Kappo A (2018) Molecular application of aptamers in the diagnosis and treatment of cancer and communicable diseases. Pharmaceuticals 11 (4)

    Google Scholar 

  5. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga JJP (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5(3):e74

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mazar J, Li Y, Rosado A, Phelan P, Kedarinath K, Parks GD, Alexander KA, Westmoreland TJ (2018) Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS ONE 13(7):e0200358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yang S, Wu J, Ding C, Cui Y, Zhou Y, Li Y, Deng M, Wang C, Xu K, Ren J, Ruan B, Li L (2017) Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. Lancet Infect Dis 17(7):716–725

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cyranoski DJN (2017) SARS outbreak linked to Chinese bat cave. Nature 552:15–16

    Article  CAS  PubMed  Google Scholar 

  9. Nkengasong J (2020) China’s response to a novel coronavirus stands in stark contrast to the 2002 SARS outbreak response. Nat Med 26(3):310–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du Toit A (2018) Continued risk of Ebola virus outbreak. Nat Rev Microbiol 16(9):521

    Article  PubMed  Google Scholar 

  11. Bornholdt ZA, Turner HL, Murin CD, Li W, Sok D, Souders CA, Piper AE, Goff A, Shamblin JD, Wollen SEJS (2016) Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 351(6277):1078–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li G, De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19(3):149–150

    Article  PubMed  CAS  Google Scholar 

  13. McGuinness WA, Malachowa N, DeLeo F (2017) Focus: infectious diseases: vancomycin resistance in Staphylococcus aureus. N Engl J Med 90(2):269

    Google Scholar 

  14. Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16(4):202

    Article  CAS  PubMed  Google Scholar 

  15. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev Soc Ind Appl Math 42(4):599–653

    Google Scholar 

  16. Schnadig VB (2017) Cytopathology of infectious and inflammatory diseases. Elsevier Inc., New York, pp 22–80

    Google Scholar 

  17. Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4(6):337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahony JB (2014) Nucleic acid amplification-based diagnosis of respiratory virus infections. Expert Rev Anti Infect Ther 8(11):1273–1292

    Article  Google Scholar 

  19. Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15(2):62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1(10):0076

    Article  CAS  Google Scholar 

  21. McKeague M, DeRosa MC (2012) Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012:748913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kaper JB, Morris JG, Levine MM (1995) Cholera. Clin Microbiol Rev 8(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies HG, Bowman C, Luby SP (2017) Cholera—management and prevention. J Infect 74:S66-S73

    Google Scholar 

  24. Ramamurthy TJL (1993) Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet 341:703–704

    Article  CAS  PubMed  Google Scholar 

  25. Mekalanos JJ, Swartz DJ, Pearson GDN, Harford N, Groyne F, Dewilde M (1983) Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306(5943):551–557

    Article  CAS  PubMed  Google Scholar 

  26. Frohnmeyer E, Tuschel N, Sitz T, Hermann C, Dahl GT, Schulz F, Baeumner AJ, Fischer M (2019) Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144(5):1840–1849

    Article  CAS  PubMed  Google Scholar 

  27. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin Aptamers by Electrochemiluminescence and enzymatic methods. Biotechniques 32(1):178–183

    Article  CAS  PubMed  Google Scholar 

  28. Frohnmeyer E, Frisch F, Falke S, Betzel C, Fischer M (2018) Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA. J Biotechnol 269:35–42

    Article  CAS  PubMed  Google Scholar 

  29. Panic N, Maetzel H, Bulajic M, Radovanovic M, Lohr JM (2020) Pancreatic tuberculosis: a systematic review of symptoms, diagnosis and treatment. United Eur Gastroent 8(4):396–402

    Article  Google Scholar 

  30. Muneer A, Macrae B, Krishnamoorthy S, Zumla A (2019) Urogenital tuberculosis—epidemiology, pathogenesis and clinical features. Nat Rev Urol 16(10):573–598

    Article  PubMed  Google Scholar 

  31. Li L, Liu Z, Zhang H, Yue W, Li CW, Yi C (2018) A point-of-need enzyme linked aptamer assay for Mycobacterium tuberculosis detection using a smartphone. Sens Actuators B Chem 254:337–346

    Article  CAS  Google Scholar 

  32. He F, Xiong Y, Liu J, Tong F, Yan D (2016) Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis. Biosens Bioelectron 77:799–804

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Feng Y, Duan S, Su L, Zhang J, He F (2019) Mycobacterium tuberculosis strain H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs-DNA. ACS Sens 4(4):849–855

    Article  CAS  PubMed  Google Scholar 

  34. Ansari N, Ghazvini K, Ramezani M, Shahdordizadeh M, Yazdian-Robati R, Abnous K, Taghdisi SM (2017) Selection of DNA aptamers against Mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Microchim Acta 185(1):21

    Article  CAS  Google Scholar 

  35. McNerney R, Daley P (2011) Towards a point-of-care test for active tuberculosis: obstacles and opportunities. Nat Rev Microbiol 9(3):204–213

    Article  CAS  PubMed  Google Scholar 

  36. Thakur H, Kaur N, Sareen D, Prabhakar N (2017) Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta 171:115–123

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Yuan Y, Chen Y, Zhang P, Bai Y, Bai L (2018) Aptamer based voltammetric biosensor for Mycobacterium tuberculosis antigen ESAT-6 using a nanohybrid material composed of reduced graphene oxide and a metal-organic framework. Microchim Acta 185(8):379

    Article  CAS  Google Scholar 

  38. Zhang X, Feng Y, Yao Q, He F (2017) Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor. Biosens Bioelectron 98:261–266

    Article  CAS  PubMed  Google Scholar 

  39. Kim J, Gedi V, Lee SC, Cho JH, Moon JY, Yoon MY (2015) Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 176(4):957–977

    Article  CAS  PubMed  Google Scholar 

  40. Klein F, Walker JS, Fitzpatrick DF, Lincoln RE, Mahlandt BG, Jones WI, Dobbs JP, Hendrix KJ (1966) Pathophysiology of Anthrax. J Infect Dis 116(2):123–138

    Article  CAS  PubMed  Google Scholar 

  41. Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common clostridium and bacillus proteins. Microbio Mol Biol Rev 68(3):373

    Article  CAS  Google Scholar 

  42. Moayeri M, Leppla SH (2004) The roles of anthrax toxin in pathogenesis. Curr Opin Microbiol 7(1):19–24

    Article  CAS  PubMed  Google Scholar 

  43. Lahousse M, Park HC, Lee SC, Ha NR, Jung IP, Schlesinger SR, Shackelford K, Yoon MY, Kim SK (2018) Inhibition of anthrax lethal factor by ssDNA aptamers. Arch Biochem Biophys 646:16–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi JS, Kim SG, Lahousse M, Park HY, Park HC, Jeong B, Kim J, Kim SK, Yoon MY (2011) Screening and Characterization of High-Affinity ssDNA Aptamers against Anthrax Protective Antigen. J Biomol Screen 16(2):266–271

    Article  CAS  PubMed  Google Scholar 

  45. Bruno JG, Carrillo MP (2012) Development of aptamer beacons for rapid presumptive detection of Bacillus spores. J Fluoresc 22(3):915–924

    Article  CAS  PubMed  Google Scholar 

  46. Oh BN, Lee S, Park HY, Baeg JO, Yoon MY, Kim J (2011) Sensitive fluorescence assay of anthrax protective antigen with two new DNA aptamers and their binding properties. Analyst 136(16):3384–3388

    Article  CAS  PubMed  Google Scholar 

  47. Kim DJ, Park HC, Sohn IY, Jung JH, Yoon OJ, Park JS, Yoon MY, Lee NE (2013) Electrical Graphene Aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. Small 9(19):3352–3360

    CAS  PubMed  Google Scholar 

  48. Lee SC, Gedi V, Ha NR, Cho JH, Park HC, Yoon MY (2015) Development of receptor-based inhibitory RNA aptamers for anthrax toxin neutralization. Int J Biol Macromol 77:293–302

    Article  CAS  PubMed  Google Scholar 

  49. Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q (2020) Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Microchim Acta 187(3):179

    Article  CAS  Google Scholar 

  50. Karimi F, Dabbagh S (2019) Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. Int J Biol Macromol 140:842–850

    Article  CAS  PubMed  Google Scholar 

  51. Ivanovskii AL (2012) Graphene-based and graphene-like materials. Russ Chem Rev 81(7):571–605

    Article  CAS  Google Scholar 

  52. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JAJN (2001) Identification of the cellular receptor for anthrax toxin. Nature 414(6860):225–229

    Article  CAS  PubMed  Google Scholar 

  53. Prasidthrathsint K, Stapleton JT (2019) Laboratory diagnosis and monitoring of viral hepatitis. Gastroenterol Clin North Am 48(2):259–279

    Article  PubMed  Google Scholar 

  54. Qu F, Liu Y, Kong R, You J (2017) A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: application to aptamer-based determination of hepatitis B virus and of dopamine. Microchim Acta 184(11):4417–4424

    Article  CAS  Google Scholar 

  55. Zheng H, Lang Y, Yu J, Han Z, Chen B, Wang Y (2019) Affinity binding of aptamers to agarose with DNA tetrahedron for removal of hepatitis B virus surface antigen. Colloids Surf B 178:80–86

    Article  CAS  Google Scholar 

  56. Ghanbari K, Roushani M (2018) A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-Chit nanocomposite for sensing hepatitis C virus core antigen. Sens Actuators B Chem 258:1066–1071

    Article  CAS  Google Scholar 

  57. Pleshakova OT, Kaysheva LA, Shumov DI, Ziborov SV, Bayzyanova MJ, Konev AV, Uchaikin FV, Archakov IA, Ivanov DY (2019) Detection of Hepatitis C Virus Core Protein in Serum Using Aptamer-Functionalized AFM Chips. Micromachines 10 (2)

    Google Scholar 

  58. Huang R, Xi Z, Deng Y, He N (2016) Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen. Sci Rep 6(1):31103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park JH, Jee MH, Kwon OS, Keum SJ, Jang SK (2013) Infectivity of hepatitis C virus correlates with the amount of envelope protein E2: development of a new aptamer-based assay system suitable for measuring the infectious titer of HCV. Virology 439(1):13–22

    Article  CAS  PubMed  Google Scholar 

  60. Ghanbari K, Roushani M, Azadbakht A (2017) Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem 534:64–69

    Article  CAS  PubMed  Google Scholar 

  61. Madhombiro M, Cha R, Sawyer J, Przybyla S, Burstein G, Morse GD (2019) Why do young adults living with HIV perform poorly on combined antiretroviral therapy (CART)? a Zimbabwean perspective. Future Virol 14(4):211–217

    Article  CAS  Google Scholar 

  62. Zeng J, Li X, Yuan H, Ma M, Li D, Ma J, Liao S Screening ssDNA aptamers against HIV P24 antigen using agarose beads as carriers. In: BIO Web of Conferences, 2017. EDP Sciences, p 03009

    Google Scholar 

  63. Zhang K, Yang Q, Huang W, Wang K, Zhu X, Xie M (2019) Detection of HIV-1 ribonuclease H activity in single-cell by using RNA mimics green fluorescent protein based biosensor. Sens Actuators B Chem 281:439–444

    Article  CAS  Google Scholar 

  64. Fatin MF, Rahim Ruslinda A, Gopinath SCB, Arshad MKM, Hashim U, Lakshmipriya T, Tang T-H, Kamarulzaman A (2019) Co-ordinated split aptamer assembly and disassembly on Gold nanoparticle for functional detection of HIV-1 tat. Process Biochem 79:32–39

    Article  CAS  Google Scholar 

  65. Wang L, Zhou H, Liu B, Zhao C, Fan J, Wang W, Tong C (2017) Fluorescence assay for ribonuclease H based on Nonlabeled substrate and DNAzyme assisted cascade amplification. Anal Chem 89(20):11014–11020

    Article  CAS  PubMed  Google Scholar 

  66. Deng X, Wang C, Gao Y, Li J, Wen W, Zhang X, Wang S (2018) Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosens Bioelectron 105:211–217

    Article  PubMed  Google Scholar 

  67. DeStefano JJ, Alves Ferreira-Bravo I (2018) A highly sensitive aptamer-based HIV reverse transcriptase detection assay. J Virol Methods 257:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chang CC, Chen CY, Chuang TL, Wu TH, Wei SC, Liao H, Lin CW (2016) Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron 78:200–205

    Article  CAS  PubMed  Google Scholar 

  69. Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448

    PubMed  PubMed Central  Google Scholar 

  70. Whitley RJ (1990) Viral Encephalitis. N Engl J Med 323(4):242–250

    Article  CAS  PubMed  Google Scholar 

  71. Ray D, Shah A, Tilgner M, Guo Y, Zhao YW, Dong HP, Deas TS, Zhou YS, Li HM, Shi PY (2006) West Nile Virus 5’-Cap Structure Is Formed by Sequential Guanine N-7 and Ribose 2’-O Methylations by Nonstructural Protein 5. J Virol 80(17):8362–8370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Han SR, Lee SW (2017) Inhibition of Japanese encephalitis virus (JEV) replication by specific RNA aptamer against JEV methyltransferase. Biochem Biophys Res Commun 483(1):687–693

    Article  CAS  PubMed  Google Scholar 

  73. Kang J, Lee MS, Watowich SJ, Gorenstein DG (2007) Combinatorial selection of a RNA thioaptamer that binds to Venezuelan equine encephalitis virus capsid protein. FEBS Lett 581(13):2497–2502

    Article  CAS  PubMed  Google Scholar 

  74. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9(1):382–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song Yl, Song J, Wei XY, Huang MJ, Sun M, Zhu L, Lin BQ, Shen HC, Zhu Z, Yang CY (2020) Discovery of Aptamers Targeting Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. Anal Chem 14(92):9895–9900

    Google Scholar 

  76. Ung COL (2020) Community pharmacist in public health emergencies: quick to action against the coronavirus 2019-nCoV outbreak. Res Social Adm Pharm 16(4):583–586

    Article  PubMed  Google Scholar 

  77. Hui DS, E IA, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, McHugh TD, Memish ZA, Drosten C, Zumla A, Petersen E (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91:264–266

    Google Scholar 

  78. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483):1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nik Kamarudin NAA, Mohammed NA, Mustaffa KMF (2017) Aptamer technology: adjunct therapy for malaria. Biomedicines 5(1):1

    Article  PubMed Central  CAS  Google Scholar 

  80. World Health Organization (2020) World malaria report 2019

    Google Scholar 

  81. Fatih FA, Staines HM, Siner A, Ahmed MA, Woon LC, Pasini EM, Kocken CHM, Singh B, Cox-Singh J, Krishna S (2013) Susceptibility of human Plasmodium knowlesi infections to anti-malarials. Malar J 12(1):425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, Lin K, Kyaw MP, Plewes K, Faiz MA, Dhorda M, Cheah PY, Pukrittayakamee S, Ashley EA, Anderson TJC, Nair S, McDew-White M, Flegg JA, Grist EPM, Guerin P, Maude RJ, Smithuis F, Dondorp AM, Day NPJ, Fo N, White NJ, Woodrow CJ (2015) Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15(4):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Figueroa-Miranda G, Feng L, Shiu SC, Dirkzwager RM, Cheung YW, Tanner JA, Schöning MJ, Offenhäusser A, Mayer D (2018) Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability. Sens Actuators B Chem 255:235–243

    Article  CAS  Google Scholar 

  84. Wang WX, Cheung YW, Dirkzwager RM, Wong WC, Tanner JA, Li HW, Wu Y (2017) Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer. Analyst 142(5):800–807

    Article  CAS  PubMed  Google Scholar 

  85. Godonoga M, Lin TY, Oshima A, Sumitomo K, Tang MSL, Cheung YW, Kinghorn AB, Dirkzwager RM, Zhou C, Kuzuya A, Tanner JA, Heddle JG (2016) A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly. Sci Rep 6:21266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dirkzwager RM, Liang S, Tanner JA (2016) Development of aptamer-based point-of-care diagnostic devices for malaria using three-dimensional printing rapid prototyping. ACS Sens 1(4):420–426

    Article  CAS  Google Scholar 

  87. Kenry GA, Zhang X, Zhang H, Lim CT (2016) Highly sensitive and selective aptamer-based fluorescence detection of a malarial biomarker using single-layer MoS2 Nanosheets. ACS Sens 1(11):1315–1321

    Article  CAS  Google Scholar 

  88. Singh NK, Thungon PD, Estrela P, Goswami P (2019) Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosens Bioelectron 123:30–35

    Article  CAS  PubMed  Google Scholar 

  89. Lee S, Song KM, Jeon W, Jo H, Shim YB, Ban C (2012) A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosens Bioelectron 35(1):291–296

    Article  CAS  PubMed  Google Scholar 

  90. Jeon W, Lee S, Dh M, Ban C (2013) A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. Anal Biochem 439 (1):11–16

    Google Scholar 

  91. Cheung YW, Dirkzwager RM, Wong WC, Costa JDN, Tanner JA (2018) Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie 145:131–136

    Article  CAS  PubMed  Google Scholar 

  92. Dirkzwager R, Kinghorn A, Richards J, Tanner J (2015) APTEC: Aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria. Chem Commun 51:4697–4700

    Article  CAS  Google Scholar 

  93. Cheung YW, Kwok J, Law AW, Watt RM, Kotaka M, Tanner JAJPotNAoS (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci USA 110 (40):15967–15972

    Google Scholar 

  94. Jain P, Das S, Chakma B, Goswami P (2016) Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase. Anal Biochem 514:32–37

    CAS  Google Scholar 

  95. Fraser LA, Kinghorn AB, Dirkzwager RM, Liang S, Cheung YW, Lim B, Shiu SCC, Tang MSL, Andrew D, Manitta J, Richards JS, Tanner JA (2018) A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens Bioelectron 100:591–596

    Article  CAS  PubMed  Google Scholar 

  96. Birch CM, Hou HW, Han J, Niles JC (2015) Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Sci Rep 5(1):11347

    Article  PubMed  PubMed Central  Google Scholar 

  97. Aryanyijuka N (2018) Non-invasive mobile phone diagnosis of malaria supported by an in vivo technique using aptamers conjugated with acridine orange. Makerere University

    Google Scholar 

  98. Tonelli RR, Colli W, Alves MJ (2012) Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 3:419

    CAS  PubMed  Google Scholar 

  99. Lo NC, Gurarie D, Yoon N, Coulibaly JT, Bendavid E, Andrews JR, King CH (2018) Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc Nat Acad Sci 115(4):E584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368(9541):1106–1118

    Article  PubMed  Google Scholar 

  101. Colley DG, Bustinduy AL, Secor WE, King CH (2014) Human schistosomiasis. Lancet 383(9936):2253–2264

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mangano VD, Bianchi C, Ouedraogo M, Kabore Y, Corran P, Silva N, Sirima SB, Nebie I, Bruschi F, Modiano D (2020) Antibody response to Schistosoma haematobium and other helminth species in malaria-exposed populations from Burkina Faso. Acta Trop 205:105381

    Article  CAS  PubMed  Google Scholar 

  103. Long Y, Qin Z, Duan M, Li S, Wu X, Lin W, Li J, Zhao Z, Liu J, Xiong D, Huang Y, Hu X, Yang C, Ye M, Tan W (2016) Screening and identification of DNA aptamers toward Schistosoma japonicum eggs via SELEX. Sci Rep 6(1):24986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moss WJ (2017) Measles. Lancet 390(10111):2490–2502

    Article  PubMed  Google Scholar 

  105. Basetti S, Hodgson J, Rawson TM, Majeed A (2017) Scarlet fever: a guide for general practitioners. London J Prim Care (Abingdon) 9(5):77–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijie Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T., Lu, Y., Deng, S., Deng, R. (2021). Aptamers for the Diagnosis of Infectious Diseases. In: Dong, Y. (eds) Aptamers for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4838-7_8

Download citation

Publish with us

Policies and ethics