Skip to main content

Biomedical Nanocomposites

  • Chapter
  • First Online:
Biomedical Composites

Abstract

Nanocomposites are consisting of a number of nanoscale substances or nanoscale substances incorporated into the bulk substances. Various materials are usually reinforced to improve physical, physico-chemical, mechanical, and biomedical properties of the nanocomposite matrices. Nanocomposites designed for use in various biomedical applications are usually well-known as ‘biomedical nanocomposites’. This chapter presents an inclusive review on the biomedical nanocomposites used for drug delivery, wound healing, gene delivery, tissue regeneration, dentistry, antimicrobial, bioimaging, biosensors, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sah MK, Pramanik K (2012) Surface modification and characterisation of natural polymers for orthopaedic tissue engineering: a review. Int J Biomed Eng Technol 9:101–121

    Article  Google Scholar 

  2. Hasnain MS, Nayak AK (2019) Background: carbon nanotubes for targeted drug delivery. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 1–9

    Google Scholar 

  3. Nayak AK, Hasnain MS (2019) Some other plant polysaccharide based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 123–1128

    Chapter  Google Scholar 

  4. Hasnain MS, Nayak AK (2019) Carbon nanotubes as quantum dots for therapeutic purpose. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 59–64

    Chapter  Google Scholar 

  5. Hasnain MS, Nayak AK (2019) Carbon nanotubes in vaccine delivery. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 69–73

    Chapter  Google Scholar 

  6. Hasnain MS, Nayak AK (2019) Carbon nanotubes in gene delivery. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 75–87

    Chapter  Google Scholar 

  7. Mohanta BC, Javed MN, Hasnain MS, Nayak AK (2020) Polyelectrolyte complexes of alginate for controlling drug release. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 297–321

    Google Scholar 

  8. Kurakula M, Rao GSNK, Kiran V, Hasnain MS, Nayak AK (2020) Alginate-based hydrogel systems for drug releasing in wound healing. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 323–358

    Google Scholar 

  9. Nayak AK, Mohanta BC, Hasnain MS, Hoda MN, Tripathi G (2020) Alginate-based scaffolds for drug delivery in tissue engineering. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 359–386

    Google Scholar 

  10. Hasnain MS, Kiran V, Kurakula M, Rao GSNK, Tabish M, Nayak AK (2020) Use of alginates for drug delivery in dentistry. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 387–404

    Google Scholar 

  11. Pal D, Nayak AK, Saha S (2019) Cellulose-based hydrogels: present and future. In: Akhtar MS, Swamy MK, Sinniah UR (eds) Natural bio-active compounds. Singapore, Springer, pp 285–332

    Chapter  Google Scholar 

  12. Chowdhury S, Chakraborty S, Maity M, Hasnain MS, Nayak AK (2020) Biocomposites of alginates in drug delivery. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 153–185

    Google Scholar 

  13. Kenawy ER, Hasnain MS (2020) Nanofibers for filtration applications. In: Nayak AK, Hasnain MS (eds) Advanced biopolymeric systems for drug delivery. Springer, Cham, pp 361–371

    Chapter  Google Scholar 

  14. Nayak AK, Bera H (2019) In situ polysaccharide-based gels for topical drug delivery applications. In: Maiti S, Jana S (eds) Polysaccharide carriers for drug delivery. Woodhead Publishing, Elsevier Inc., pp 615–638

    Google Scholar 

  15. Hasnain MS, Rishishwar P, Ali S, Alkahtani S, Tabish M, Milivojevic M, Ansari MT, Nayak AK (2020) Formulation and ex vivo skin permeation of lidocaine HCl topical gels using dillenia (Dillenia indica L.) fruit gum. Revista Mexicana de Ingeniería Química 19:1465–1476

    Google Scholar 

  16. Hasnain MS, Rishishwar P, Ali S (2017) Use of cashew bark exudate gum in the preparation of 4 % lidocaine HCL topical gels. Int J Phar Pharm Sci 9(8):146–150

    Article  CAS  Google Scholar 

  17. Hasnain MS, Rishishwar P, Rishishwar S, Ali S, Nayak AK (2018) Isolation and characterization of Linum usitatisimum polysaccharide to prepare mucoadhesive beads of diclofenac sodium. Int J Biol Macromol 116:162–172

    Article  CAS  Google Scholar 

  18. Nayak AK, Pal D, Santra K (2016) Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginate beads. Int J Biol Macromol 82:1023–1027

    Article  CAS  Google Scholar 

  19. Jana S, Ali SA, Nayak AK, Sen KK, Basu SK (2014) Development and optimization of topical gel containing aceclofenac-crospovidone solid dispersion by “Quality by Design” approach. Chem Eng Res Des 92:2095–2105

    Article  CAS  Google Scholar 

  20. Nayak AK, Pal D (2013) Ionotropically-gelled mucoadhesive beads for oral metformin HCl delivery: formulation, optimization and antidiabetic evaluation. J Sci Ind Res 72:15–22

    CAS  Google Scholar 

  21. Hasnain MS, Guru PR, Rishishwar P, Ali S, Ansari MT, Nayak AK (2020) Atenolol-releasing buccal patches made of Dillenia indica L. fruit gum: preparation and ex vivo evaluations. SN Appl Sci 2(1):57

    Google Scholar 

  22. Pal D, Nayak AK (2015) Interpenetrating polymer networks (IPNs): natural polymeric blends for drug delivery. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials, vol VI. Taylor & Francis Group, USA, pp 4120–4130

    Google Scholar 

  23. Nanda SS, Yi DK, Hasnain MS, Nayak AK (2019) Hydroxyapatite-alginate composites in drug delivery. In: Hasnain MS, Nayak AK (eds) Alginate: versatile polymer in biomedical applications and therapeutics. Apple Academic Press, USA, pp 483–503

    Google Scholar 

  24. Alam MS, Javed MN, Pottoo FH, Waziri A, Almalki FA, Hasnain MS, Garg A, Saifullah MK (2019) QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto-dye. Appl Organomet Chem 33(9):e5071

    Google Scholar 

  25. Hasnain MS, Nayak AK, Kurakula M, Hoda MN (2020) Alginate nanoparticles in drug delivery. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 129–152

    Google Scholar 

  26. Nayak AK, Bera H, Hasnain MS (2020) Particulate matrices of ionotropically gelled alginate- and plant-derived starches for sustained drug release. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 257–295

    Google Scholar 

  27. Majeed S, Shamsuddin AF, Hasnain MS (2018) Novel green approach for synthesis of metallic nanoparticles and its biomedical application. Current Nanomed 8(3):177–183

    Article  CAS  Google Scholar 

  28. Hasnain MS, Ahmad SA, Hoda MN, Rishishwar S, Rishishwar P, Nayak AK (2019) Stimuli-responsive carbon nanotubes for targeted drug delivery. In: Makhlouf ASH, Abu-Thabit NY (eds) Stimuli responsive polymeric nanocarriers for drug delivery applications: vol 2: advanced nanocarriers for therapeutics. Woodhead Publishing Series in Biomaterials, Elsevier Ltd., pp 321–344

    Google Scholar 

  29. Panigrahi BK, Nayak AK (2020) Carbon nanotubes: an emerging drug delivery carrier in cancer therapeutics. Curr Drug Deliv 17:000–000

    Article  Google Scholar 

  30. Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK (2018) Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol 48:21–29

    Article  CAS  Google Scholar 

  31. Jana S, Gangopadhaya A, Bhowmik BB, Nayak AK, Mukhrjee A (2015) Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. Int J Biol Macromol 72:28–30

    Article  CAS  Google Scholar 

  32. Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohyd Polym 98:870–876

    Article  CAS  Google Scholar 

  33. Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, Hasnain MS, Nayak AK (2019) Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 52:303–315

    Article  CAS  Google Scholar 

  34. Hasnain MS, Javed MN, Alam MS, Rishishwar P, Rishishwar S, Ali S, Nayak AK, Beg S (2019) Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box-Behnken design. Mater Sci Eng, C 99:1105–1114

    Article  CAS  Google Scholar 

  35. Nayak AK (2010) Hydroxyapatite synthesis methodologies: an overview. Int J Chem Tech Res 2(2):903–907

    Google Scholar 

  36. Hasnain MS, Nayak AK (2019) Recent progress in responsive polymer-based drug delivery systems. In: Makhlouf ASH, Abu-Thabit NY (eds) Stimuli responsive polymeric nanocarriers for drug delivery applications: vol 2: advanced nanocarriers for therapeutics. Woodhead Publishing Series in Biomaterials, Elsevier Ltd., pp 569–595

    Google Scholar 

  37. Hasnain MS, Nayak AK (2018) Chitosan as responsive polymer for drug delivery applications. In: Makhlouf ASH, Abu-Thabit NY (eds) Stimuli responsive polymeric nanocarriers for drug delivery applications, vol 1. Types and triggers. Woodhead Publishing Series in Biomaterials, Elsevier Ltd., pp 581–605

    Google Scholar 

  38. Bhattacharjee A, Das PJ, Dey S, Nayak AK, Roy PK, Chakrabarti S, Marbaniang D, Das SK, Ray S, Chattopadhyay P, Mazumder B (2020) Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids Surf, A 585:124071

    Article  CAS  Google Scholar 

  39. Das B, Sen SO, Maji R, Nayak AK, Sen KK (2017) Transferosomal gel for transdermal delivery of risperidone: formulation optimization and ex vivo permeation. J Drug Deliv Sci Technol 38:59–71

    Article  CAS  Google Scholar 

  40. Malakar J, Sen SO, Nayak AK, Sen KK (2012) Preparation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharma J. 20:355–363

    Article  Google Scholar 

  41. Hasnain MS, Nayak AK (2019) Absorption and transportation of carbon nanotubes. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 65–68

    Chapter  Google Scholar 

  42. Hasnain MS, Nayak AK (2019) Applications of carbon nanotubes. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 33–36

    Chapter  Google Scholar 

  43. Hasnain MS, Nayak AK (2019) Targeted delivery with carbon nanotubes. In: Hasnain MS, Nayak AK (eds) Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 37–50

    Chapter  Google Scholar 

  44. Hasnain MS, Ahmed SA, Behera A, Alkahtani S, Nayak AK (2020) Inorganic materials–alginate composites in drug delivery. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 231–256

    Google Scholar 

  45. Das S, Pattanayak D, Nayak AK, Yi DK, Nanda SS, Ansari MT, Hasnain MS (2020) Alginate–montmorillonite composite systems as sustained drug delivery carriers. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 187–201

    Google Scholar 

  46. Nayak AK, Pal D (2012) Natural polysaccharides for drug delivery in tissue engineering. Everyman’s Sci XLVI:347–352

    Google Scholar 

  47. Hasnain MS, Ahmad SA, Chaudhary N, Hoda MN, Nayak AK (2019) Biodegradable polymer matrix nanocomposites for bone tissue engineering. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in orthopaedics. Woodhead Publishing Series in Biomaterials, Elsevier Inc., pp 1–37

    Google Scholar 

  48. Hasnain MS, Nayak AK (2019) Nanocomposites for improved orthopedic and bone tissue engineering applications. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in orthopaedics. Woodhead Publishing Series in Biomaterials, Elsevier Inc., pp 145–177

    Google Scholar 

  49. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352

    Article  CAS  Google Scholar 

  50. Hasnain MS, Ahmad SA, Minhaj MA, Ara TJ, Nayak AK (2019) Nanocomposite materials for prosthetic devices. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in orthopaedics. Elsevier Inc., pp 127–144

    Google Scholar 

  51. Nayak AK, Mazumder S, Ara TJ, Ansari MT, Hasnain MS (2019) Calcium fluoride-based dental nanocomposites. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in dentistry. Elsevier Inc., pp 27–45

    Google Scholar 

  52. Rani P, Pal D, Hoda MN, Ara TJ, Beg S, Hasnain MS, Nayak AK (2019) Dental pulp capping nanocomposites. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in dentistry. Elsevier Inc., pp 65−91

    Google Scholar 

  53. Hasnain MS, Ahmad SA, Chaudhary N, Minhaj MA, Nayak AK (2019) Degradation and failure of dental composite materials. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in dentistry. Elsevier Inc., pp 108–121

    Google Scholar 

  54. Mazumder S, Nayak AK, Ara TJ, Hasnain MS (2019) Hydroxyapatite composites for dentistry. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in dentistry. Woodhead Publishing Series in Biomaterials, Elsevier Inc., pp 108–121

    Google Scholar 

  55. Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Ann Rev Chem Biomol Eng 1:37–58

    Article  CAS  Google Scholar 

  56. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  CAS  Google Scholar 

  57. Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418

    Article  CAS  Google Scholar 

  58. Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32

    Article  CAS  Google Scholar 

  59. Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060

    Article  CAS  Google Scholar 

  60. Nayak AK, Ahmad SA, Beg S, Ara TJ, Hasnain MS (2018) Drug delivery: present, past and future of medicine. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing Series in Biomaterials, Elsevier Inc., pp 255–282

    Google Scholar 

  61. Hasnain MS, Ahmed SA, Alkahtani S, Milivojevic M, Kandar CC, Dhara AK, Nayak AK (2020) Biopolymers for drug delivery. In: Nayak AK, Hasnain MS (eds) Advanced biopolymeric systems for drug delivery. Springer, Cham, pp 1–29

    Google Scholar 

  62. Nayak AK, Hasnain MS (2019) Background: multiple units in oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 1–17

    Chapter  Google Scholar 

  63. Nayak AK, Ansari MT, Sami F, Balvir Singh HK, Hasnain MS (2020) Alginates as drug delivery excipients. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 19–39

    Google Scholar 

  64. Bera H, Maiti S, Saha S, Nayak AK (2019) Biopolymers-based gastroretentive buoyant systems for therapeutic management of Helicobacter pylori infection. In: Maiti S, Jana S (eds) Polysaccharide carriers for drug delivery. Woodhead Publishing, Elsevier Inc., pp 713–736

    Google Scholar 

  65. Nayak AK, Hasnain MS (2019) Plant polysaccharides in drug delivery applications. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 19–23

    Chapter  Google Scholar 

  66. Nayak AK, Hasnain MS (2019) Gum Arabic based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 25–30

    Chapter  Google Scholar 

  67. Nayak AK, Hasnain MS (2019) Tamarind polysaccharide based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 31–59

    Chapter  Google Scholar 

  68. Nayak AK, Hasnain MS (2019) Locust bean gum based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 61–66

    Google Scholar 

  69. Nayak AK, Hasnain MS (2019) Sterculia gum based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 67–82

    Chapter  Google Scholar 

  70. Nayak AK, Hasnain MS (2019) Okra gum based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 83–92

    Chapter  Google Scholar 

  71. Nayak AK, Hasnain MS (2019) Fenugreek seed mucilage based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 93–112

    Chapter  Google Scholar 

  72. Nayak AK, Hasnain MS (2019) Potato starch based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 113–116

    Chapter  Google Scholar 

  73. Nayak AK, Hasnain MS (2019) Linseed polysaccharide based multiple units for oral drug delivery. In: Nayak AK, Hasnain MS (eds) Plant polysaccharides-based multiple-unit systems for oral drug delivery. Springer, Singapore, pp 117–121

    Chapter  Google Scholar 

  74. Milivojevic M, Pajic-Lijakovic I, Bugarski B, Nayak AK, Hasnain MS (2019) Gellan gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 145–186

    Google Scholar 

  75. Bera H, Abbasi YF, Hasnain MS, Nayak AK (2019) Sterculia gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 223–247

    Google Scholar 

  76. Nayak AK, Ansari MT, Sami F, Bera H, Hasnain MS (2019) Cashew gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 263–283

    Google Scholar 

  77. Dey S, Nandy BC, De JN, Hasnain MS, Nayak AK (2019) Tamarind gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 285–306

    Google Scholar 

  78. Samanta A, De A, Hasnain MS, Bera H, Nayak AK (2019). Gum odina as pharmaceutical excipient. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 327–337

    Google Scholar 

  79. Jana S, Maiti S, Jana S, Sen KK, Nayak AK (2019) Guar gum in drug delivery applications. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 187–201

    Google Scholar 

  80. Pal D, Nayak AK, Saha S (2019) Interpenetrating polymer network hydrogels of chitosan: applications in controlling drug release. In: Mondal MIH (ed) Cellulose-based superabsorbent hydrogels. Springer, Cham, pp 1727–1768

    Chapter  Google Scholar 

  81. Nayak AK, Pal D (2018) Functionalization of tamarind gum for drug delivery. In: Thakur VK, Thakur MK (eds) Functional biopolymers. Springer International Publishing, Switzerland, pp 35–56

    Google Scholar 

  82. Hasnain MS, Nayak AK (2018) Alginate-inorganic composite particles as sustained drug delivery matrices. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Elsevier Inc., pp 39–74

    Google Scholar 

  83. Nayak AK, Ara TJ, Hasnain MS, Hoda N (2018) Okra gum-alginate composites for controlled releasing drug delivery. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing Series in Biomaterials, Elsevier Inc., pp 761–785

    Google Scholar 

  84. Dey S, Roy S, MS, Nayak AK (2020) Grafted alginates in drug delivery. Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 71–100

    Google Scholar 

  85. Gupta S, Hasnain MS, Agarwal SS (2012) Formulation and evaluation of oral disintegrating tablets of itopride hydrochloride using ion exchange resins as drug carrier. Asian J Pharm Sci 7(3):207–218

    Google Scholar 

  86. Hasnain MS, Rishishwar P, Ali S (2017) Floating-bioadhesive matrix tablets of hydralazine HCL made of cashew gum and HPMC K4M. Int J Phar Pharm Sci 9(7):124–129

    Article  CAS  Google Scholar 

  87. Malakar J, Das K, Nayak AK (2014) In situ cross-linked matrix tablets for sustained salbutamol sulfate release—formulation development by statistical optimization. Polymers Med 44:221–230

    Google Scholar 

  88. Malakar J, Nayak AK (2013) Floating bioadhesive matrix tablets of ondansetron HCl: optimization of hydrophilic polymer-blends. Asian J Pharma 7:174–183

    Article  Google Scholar 

  89. Nayak AK, Das B, Maji R (2013) Gastroretentive hydrodynamically balanced system of ofloxacin: formulation and in vitro evaluation. Saudi Pharma J 21:113–117

    Article  Google Scholar 

  90. Verma A, Dubey J, Verma N, Nayak AK (2017) Chitosan-hydroxypropyl methylcellulose matrices as carriers for hydrodynamically balanced capsules of moxifloxacin HCl. Curr Drug Deliv 14:83–90

    Article  CAS  Google Scholar 

  91. Das B, Nayak AK, Nanda U (2013) Topical gels of lidocaine HCl using cashew gum and Carbopol 940: preparation and in vitro skin permeation. Int J Biol Macromol 62:514–517

    Article  CAS  Google Scholar 

  92. Ray P, Maity M, Barik H, Sahoo GS, Hasnain MS, Hoda MN, Nayak AK (2020) Alginate-based hydrogels for drug delivery applications. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 41–70

    Google Scholar 

  93. Nayak AK, Hasnain MS (2020) Ionotropically gelled alginate particles in sustained drug release. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Academic Press, Elsevier Inc., USA, pp 203–230

    Google Scholar 

  94. Nayak AK, Hasnain MS, Pal K, Banerjee I, Pal D (2020) Gum-based hydrogels in drug delivery. In: Pal K, Banerjee I, Sarkar P, Kim D, Deng W-P, Dubey NK, Majumder K (eds) Biopolymer-based formulations, biomedical and food applications. Elsevier Inc., pp 605–645

    Google Scholar 

  95. Nayak AK, Das B (2018) Introduction to polymeric gels. In: Pal K, Bannerjee I (eds) Polymeric gels, characterization, properties and biomedical applications. Woodhead Publishing Series in Biomaterials, Elsevier Ltd., pp 3–27

    Google Scholar 

  96. Nayak AK, Pal D (2016) Sterculia gum-based hydrogels for drug delivery applications. In: Kalia S (ed) Polymeric hydrogels as smart biomaterials. Springer Series on polymer and composite materials. Springer International Publishing, Switzerland, pp 105–151

    Google Scholar 

  97. Guru PR, Bera H, Das M, Hasnain MS, Nayak AK (2018) Aceclofenac-loaded Plantago ovata F. husk mucilage-Zn+2-pectinate controlled-release matrices. Starch—Stärke 70:1700136

    Google Scholar 

  98. Nayak AK, Pal D, Santra K (2014) Ispaghula mucilage-gellan mucoadhesive beads of metformin HCl: development by response surface methodology. Carbohyd Polym 107:41–50

    Article  CAS  Google Scholar 

  99. Nayak AK, Pal D (2014) Trigonella foenum-graecum L. seed mucilage-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohyd Polym 107:31–40

    Google Scholar 

  100. Nayak AK, Pal D, Santra K (2014) Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl. Int J Biol Macromole 65:329–339

    Google Scholar 

  101. Nayak AK, Kalia S, Hasnain MS (2013) Optimization of aceclofenac-loaded pectinate-poly (vinyl pyrrolidone) beads by response surface methodology. Int J Biol Macromol 62:194–202

    Article  CAS  Google Scholar 

  102. Nayak AK, Pal D, Pradhan J, Hasnain MS (2013) Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCl: design, optimization and evaluation. Int J Biol Macromol 54:144–154

    Article  CAS  Google Scholar 

  103. Nayak AK, Pal D (2013) Formulation optimization of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl. Int J Biol Macromol 59:264–272

    Article  CAS  Google Scholar 

  104. Nayak AK, Pal D, Hasnain MS (2013) Development, optimization and in vitro-in vivo evaluation of pioglitazone-loaded jackfruit seed starch-alginate beads. Curr Drug Deliv 10:608–619

    Article  CAS  Google Scholar 

  105. Nayak AK, Pal D (2013) Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl. Int J Biol Macromol 62:137–145

    Article  CAS  Google Scholar 

  106. Nayak AK, Pal D, Das S (2013) Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohyd Polym 96:349–357

    Article  CAS  Google Scholar 

  107. Nayak AK, Pal D, Malakar J (2013) Development, optimization and evaluation of emulsion-gelled floating beads using natural polysaccharide-blend for controlled drug release. Polym Eng Sci 53:338–350

    Article  CAS  Google Scholar 

  108. Nayak AK, Pal D, Santra K (2014) Development of pectinate-ispagula mucilage mucoadhesive beads of metformin HCl by central composite design. Int J Biol Macromol 66:203–221

    Article  CAS  Google Scholar 

  109. Nayak AK, Pal D, Santra K (2014) Tamarind seed polysaccharide-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohyd Polym 103:154–163

    Article  CAS  Google Scholar 

  110. Pal D, Nayak AK (2015) Alginates, blends and microspheres: controlled drug delivery. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials, vol I. Taylor & Francis Group, USA, pp 89–98

    Google Scholar 

  111. Ali SA, Nayak AK, Sen KK, Prabhakar T (2019) Preparation and characterization of vetiver oil encapsulated polymeric microcapsules for sedative and hypnotic activity. Int J Res Pharma Sci 10(4):3616–3625

    Article  CAS  Google Scholar 

  112. Nayak AK, Beg S, Hasnain MS, Malakar J, Pal D (2018) Soluble starch-blended Ca2+-Zn2+-alginate composites-based microparticles of aceclofenac: formulation development and in vitro characterization. Future J Pharma Sci 4:63–70

    Article  Google Scholar 

  113. Das B, Dutta S, Nayak AK, Nanda U (2014) Zinc alginate-carboxymethyl cashew gum microbeads for prolonged drug release: development and optimization. Int J Biol Macromol 70:505–515

    Article  CAS  Google Scholar 

  114. Jana S, Saha A, Nayak AK, Sen KK, Basu SK (2013) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B Biointerf 105:303–309

    Article  CAS  Google Scholar 

  115. Rapalli VK, Singhvi G, Gorantla S, Waghule T, Dubey SK, Saha RN, Hasnain MS, Nayak AK (2019) Stability indicating liquid chromatographic method for simultaneous quantification of betamethasone valerate and tazarotene in in-vitro and ex-vivo studies of complex nanoformulation. J Sep Sci 42(22):3413–3420

    Article  CAS  Google Scholar 

  116. Rath Adhikari SN, Nayak BS, Nayak AK, Mohanty B (2010) Formulation and evaluation of buccal patches for delivery of atenolol. AAPS PharmSciTech 11(3):1034–1044

    Google Scholar 

  117. Hasnain MS, Rishishwar P, Rishishwar S, Ali S, Nayak AK (2018) Extraction and characterization of cashew tree (Anacardium occidentale) gum; use in aceclofenac dental pastes. Int J Biol Macromol 116:1074–1081

    Article  CAS  Google Scholar 

  118. Hasnain MS, Rishishwar P, Ali S, Nayak AK (2020) Preparation and evaluation of aceclofenac dental pastes using dillenia fruit gum for periodontitis treatment. SN Appl Sci 2(3):1–8

    Article  CAS  Google Scholar 

  119. Jena AK, Nayak AK, De A, Mitra D, Samanta A (2018) Development of lamivudine containing multiple emulsions stabilized by gum odina. Future J Pharma Sci 4:71–79

    Article  Google Scholar 

  120. Malakar J, Basu A, Nayak AK (2014) Candesartan cilexetil microemulsions for transdermal delivery: formulation, in-vitro skin permeation and stability assessment. Curr Drug Deliv 11:313–321

    Article  CAS  Google Scholar 

  121. Ray P, Hasnain MS, Koley A, Nayak AK (2019) Bone-implantable devices for drug delivery applications. In: Pal K, Kraatz H-H, Li C, Khasnobish A, Bag S, Banerjee I, Kuruganti U (eds) Bioelectronics and medical devices, from materials to devices—fabrication, applications and reliability. Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Inc., pp 333–392

    Google Scholar 

  122. Nayak AK, Hasnain MS, Malakar J (2013) Development and optimization of hydroxyapatite-ofloxacin implants for possible bone-implantable delivery in osteomyelitis treatment. Curr Drug Deliv 10:241–250

    Article  CAS  Google Scholar 

  123. Nayak AK, Sen KK (2009) Hydroxyapatite-ciprofloxacin implantable minipellets for bone delivery: preparation, characterization, in vitro drug adsorption and dissolution studies. Int J Drug Develop Res 1(1):47–59

    CAS  Google Scholar 

  124. Nayak AK, Laha B, Sen KK (2011) Development of hydroxyapatite-ciprofloxacin bone-implants using >>Quality by Design<< Acta Pharma 61(1):25–36

    Article  CAS  Google Scholar 

  125. Nayak AK, Bhattacharyya A, Sen KK (2010) Hydroxyapatite-antibiotic implantable minipellets for bacterial bone infections using precipitation technique: preparation, characterization and in-vitro antibiotic release studies. J Pharma Res 3(1):53–59

    CAS  Google Scholar 

  126. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a highcontent of nanofibrillated cellulose. Carbohydr Polym 81:394–401

    Google Scholar 

  127. Iliescu RI, Andronescu E, Ghitulica CD, Voicu G, Ficai A, Hoteteu M (2014) Montmorillonite–alginate nanocomposite as a drug delivery system–incorporation and in vitro release of irinotecan. Int J Pharm 463:184–192

    Article  CAS  Google Scholar 

  128. Iliescu RI, Andronescu E, Ghitulica CD, Berger D, Ficai A (2011) Montmorillonite-alginate nanocomposite beads as drug carrier for oral administration of carboplatin-preparation and characterization. UPB Sci Bull Ser B 73:3–16

    CAS  Google Scholar 

  129. Azhar FF, Olad A (2014) A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate–chitosan/montmorillonite nanocomposite systems. Appl Clay Sci 101:288–296

    Article  CAS  Google Scholar 

  130. Liu K-H, Liu T-Y, Chen S-Y, Liu D-M (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045

    Article  CAS  Google Scholar 

  131. Justin R, Chen B (2014) Strong and conductive chitosan-reduced graphene oxide nanocomposites for transdermal drug delivery. J Mater Chem B 2:3759–3770

    Google Scholar 

  132. Venkatesan P, Puvvada N, Dash R, Prashanth kumar BN, Sarkar D, Azab B, Pathak A, Kundu SC, Fisher PB, Mandal M (2011) The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 32:3794–3806

    Google Scholar 

  133. Nanda R, Sasmal A, Nayak PL (2011) Preparation and characterization of chitosan–polylactide composites blended with Cloisite 30B for control release of the anticancer drug paclitaxel. Carbohydr Polym 83:988–994

    Article  CAS  Google Scholar 

  134. Wu J, Jiang W, Shen Y, Jiang W, Tian R (2017) Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepersfor pH-sensitive controlled release of doxorubicin. Mater Sci Eng C Mater Biol Appl 70:132–140

    Article  CAS  Google Scholar 

  135. Nayak AK, Sen KK (2016) Bone-targeted drug delivery systems. In: Maiti S, Sen KK (eds) Bio-targets & drug delivery approaches. CRC Press, Boca Raton, FL, USA, pp 207–231

    Google Scholar 

  136. Hesaraki S, Moztarzadeh F, Nemati R, Nezafati N (2009) Preparation and characterization of calcium sulfate-biomimetic apatite nanocomposites for controlled release of antibiotics. J Biomed Mater Res B Appl Biomater 91:651–661

    Article  CAS  Google Scholar 

  137. Aghaei H, Nourbakhsh AA, Karbasi S, Kalbasid R, Rafienia M, Nourbakhsh N, Bonakdar S, Mackenzie KJD (2014) Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery. Ceramics Int 40:7355–7362

    Article  CAS  Google Scholar 

  138. Nithya R, Meenakshi Sundaram N (2015) Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants. Int J Nanomed 10:119–127

    CAS  Google Scholar 

  139. Gholamali I, Yadollahi M (2020) Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent [published online ahead of print, 2020 May 30]. Int J Biol Macromol 160:724–735

    Google Scholar 

  140. Mallakpour S, Hatami M (2019) Fabrication and characterization of pH-sensitive bio-nanocomposite beads havening folic acid intercalated LDH and chitosan: drug release and mechanism evaluation. Int J Biol Macromol 122:157–167

    Article  CAS  Google Scholar 

  141. Kodoth AK, Ghate VM, Lewis SA, Badalamoole V (2018) Application of pectin-zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism. Int J Biol Macromol 115:418–430

    Article  CAS  Google Scholar 

  142. Wang SY, Meng YJ, Li J, Liu JP, Liu ZQ, Li DQ (2020) A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films. Int J Biol Macromol 157:170–176

    Article  CAS  Google Scholar 

  143. Taufiq A, Nikmah A, Hidayat A, Sunaryono S, Mufti N, Hidayat N, Susanto H (2020) Synthesis of magnetite/silica nanocomposites from natural sand to create a drug delivery vehicle. Heliyon 6(4):e03784

    Article  Google Scholar 

  144. Ding Y, Yin H, Shen S, Sun K, Liu F (2017) Chitosan-based magnetic/fluorescent nanocomposites for cell labelling and controlled drug release. New J Chem 41:1736–1743

    Article  CAS  Google Scholar 

  145. Raj V, Prabha G (2016) Synthesis, characterization and in vitro drug release of cisplatin loaded Cassava starch acetate–PEG/gelatin nanocomposites. J Assoc Arab Univ Basic Appl Sci 21:10–16

    Google Scholar 

  146. Hasnain MS, Nayak AK, Singh M, Tabish M, Ansari MT, Ara TJ (2016) Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release. Int J Biol Macromol 83:71–77

    Article  CAS  Google Scholar 

  147. Kajthunyakarn W, Sakloetsakun D, Pongjanyakul T (2018) Sodium caseinate-magnesium aluminum silicate nanocomposite films for modified-release tablets. Mater Sci Eng C Mater Biol Appl 92:827–839

    Article  CAS  Google Scholar 

  148. Asare-Addo K, Totea AM, Nokhodchi A (2020) Drug release from magnesium aluminium silicate-polyethylene oxide (PEO) nanocomposite matrices: an investigation using the USP III apparatus. Eur J Pharm Sci 153:105474

    Article  CAS  Google Scholar 

  149. Roul J, Mohapatra R, Sahoo SK (2013) Preparation, characterization and drug delivery behavior of novel biopolymer/hydroxyapatite nanocomposite beads. Asian J Biomed Pharm Sci 3:33–38

    Google Scholar 

  150. Kharaziha M, Fathi MH, Edris H, Nourbakhsh N, Talebi A, Salmanizadeh S (2015) PCL-forsterite nanocomposite fibrous membranes for controlled release of dexamethasone. J Mater Sci Mater Med 26:53–64

    Article  CAS  Google Scholar 

  151. Bala Subramanian S, Francis AP, Devasena T (2014) Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178

    Article  CAS  Google Scholar 

  152. Wang X, Yang B, Xu X, Su M, Xi M, Yin Z (2020) Dextran sulfate-modified pH-sensitive layered double hydroxide nanocomposites for treatment of rheumatoid arthritis. Drug Deliv Transl Res. https://doi.org/10.1007/s13346-020-00832-2

    Article  Google Scholar 

  153. Kolanthai E, Sindu PA, Arul KT, Chandra VS, Manikandan E, Kalkura SN (2017) Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery. J. Photochem Photobiol B Biol 166:220–231

    Article  CAS  Google Scholar 

  154. Kevadiya BD, Joshi GV, Patel HA, Ingole PG, Mody HM, Bajaj HC (2010) Montmorillonite-alginate nanocomposites as a drug delivery system: intercalation and in vitro release of vitamin B1 and vitamin B6. J Biomater Appl 25(2):161–177

    Article  CAS  Google Scholar 

  155. Kummari SVKR, Kummara MR, Palem RR, Nagellea SR, Shchipunov Y, Ha C-S (2015) Chitosan-poly(aminopropyl/phenylsilsesquioxane) hybrid nanocomposite membranes for antibacterial and drug delivery applications. Polym Int 64(2):293–302

    Google Scholar 

  156. Lin J, Li Y, Li Y, Wu H, Yu F, Zhou S, Xie L, Luo F, Lin C, Hou Z (2015) Drug/Dye-Loaded, multifunctional PEG-Chitosan-Iron oxide nanocomposites for methotraxate synergistically self-Targeted cancer therapy and dual model imaging. ACS Appl Mater Interfaces 7:11908–11920

    Article  CAS  Google Scholar 

  157. Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43

    Article  CAS  Google Scholar 

  158. Vedakumari WS, Prabu P, Sastry TP (2015) Chitosan-fibrin nanocomposites as drug delivering and wound healing materials. J Biomed Nanotechnol 11(4):657–667

    Article  CAS  Google Scholar 

  159. Basu T, Pal B, Singh S (2018) Hollow chitosan nanocomposite as drug carrier system for controlled delivery of ramipril. Chem Phys Lett 706:465–471

    Article  CAS  Google Scholar 

  160. Taleb MFA, Alkahtani A, Mohamed SK (2015) Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bullet 72(4):725–742

    Article  CAS  Google Scholar 

  161. Thomas TJ, Tajmir-Riahi HA, Pillai CKS (2019) Biodegradable polymers for gene delivery. Molecules 24(20):3744

    Article  CAS  Google Scholar 

  162. Oliveira AV, Rosa da Costa AM, Silva GA (2017) Non-viral strategies for ocular gene delivery. Mater Sci Eng C 77:1275–1289

    Google Scholar 

  163. Fernandez-Piñeiro I, Pensado A, Badiola I, Sanchez A (2018) Development and characterisation of chondroitin sulfate- and hyaluronic acid-incorporated sorbitan ester nanoparticles as gene delivery systems. Eur J Pharm Biopharm 125:85–94

    Google Scholar 

  164. Kashkouli KI, Torkzadeh-Mahani M, Mosaddegh E (2018) Synthesis and characterization of aminotetrazole-functionalized magnetic chitosan nanocomposite as a novel nanocarrier for targeted gene delivery. Mater Sci Eng, C 89:166–174

    Article  CAS  Google Scholar 

  165. Xie Y, Qiao H, Su Z, Chen M, Ping Q, Sun M (2014) PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 35(27):7978–7991

    Google Scholar 

  166. Zhu Q, Zhou Y, Guan M, Zhou XF, Yang SD, Liu Y et al (2014) Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials 35(22):5965–5976

    Google Scholar 

  167. Yan C-Y, Gu J-W, Hou D-P, Jing HY, Wang J, Guo YZ et al (2015) Synthesis of tat tagged and folate modified N-succinyl-chitosan self-assembly nanoparticles as a novel gene vector. Int J Biol Macromol 72:751–756

    Google Scholar 

  168. Yao L, Wang X, Weng W, Fu Y, Cheng K (2020) Bioactive nanocomposite coatings under visible light illumination promoted surface-mediated gene delivery. Biomater Sci 8(13):3685–3696

    Article  CAS  Google Scholar 

  169. Wang X, Coradin T, Hélary C (2018) Modulating inflammation in a cutaneous chronic wound model by IL-10 released from collagen-silica nanocomposites via gene delivery. Biomater Sci 6(2):398–406

    Article  CAS  Google Scholar 

  170. Kim H, Kim WJ (2014) Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small 10(1):117–126

    Article  CAS  Google Scholar 

  171. Oyane A, Araki H, Nakamura M, Shimizu Y, Shubhra QTH, Ito A, Tsurushima H (2016) Controlled superficial assembly of DNA-amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery. Colloids Surf B Biointerfaces 1(141):519–527

    Article  CAS  Google Scholar 

  172. Li L, Zhang R, Gu W, Xu ZP (2018) Mannose-conjugated layered double hydroxide nanocomposite for targeted siRNA delivery to enhance cancer therapy. Nanomedicine 14(7):2355–2364

    Article  CAS  Google Scholar 

  173. Zhou Q, Wang Y, Xiang J, Piao Y, Zhou Z, Tang J, Liu X, Shen Y (2018) Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery. Biomater Sci 6(12):3178–3188

    Article  CAS  Google Scholar 

  174. Cheang TY, Lei YY, Zhang ZQ, Zhou HY, Ye RY, Lin Y, Wang S (2018) Graphene oxide-hydroxyapatite nanocomposites effectively deliver HSV-TK suicide gene to inhibit human breast cancer growth. J Biomater Appl 33(2):216–226

    Article  CAS  Google Scholar 

  175. Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R (2019) Antimicrobial applications of clay nanotube-based composites. Nanomaterials (Basel) 9(5):708

    Article  CAS  Google Scholar 

  176. Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422

    Article  Google Scholar 

  177. Butchosa N, Brown C, Larsson PT, Berglund LA, Bulone V, Zhou Q (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15(12):3404–3413

    Article  CAS  Google Scholar 

  178. Rinehart SJ, Campbell TD, Burke KJ, Garcia B, Mlynarski A, Brain SJ, Keleher JJ (2016) Synthesis and characterization of a chitosan/PVA antimicrobial hydrogel nanocomposite for responsive wound management materials. J Microb Biochem Technol

    Google Scholar 

  179. Elbarbary AM, El-Sawy NM (2016) Radiation synthesis and characterization of polyvinyl alcohol/chitosan/silver nanocomposite membranes: antimicrobial and blood compatibility studies. Polym Bull 1–18

    Google Scholar 

  180. Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials. Int Biol Macromol 69:185–191

    Article  CAS  Google Scholar 

  181. Mohamed RR, Sabaa MW (2014) Synthesis and characterization of antimicrobial cross-linked carboxymethyl chitosan nanoparticles loaded with silver. Int J Biol Macromol 69:95–99

    Article  CAS  Google Scholar 

  182. Farhoudian S, Yadollahi M, Namazi H (2016) Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol 82:837–843

    Article  CAS  Google Scholar 

  183. Khalil WF, El-Sayyad GS, El Rouby WMA, Sadek MA, Farghali AA, El-Batal AI (2020) Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int J Biol Macromol 164:1370–1383

    Article  CAS  Google Scholar 

  184. Chen J, Fan L, Yang C, Wang S, Zhang M, Xu J, Luo S (2020) Facile synthesis of Ag nanoparticles-loaded chitosan antibacterial nanocomposite and its application in polypropylene. Int J Biol Macromol S0141–8130(20):33904

    Google Scholar 

  185. Malagurski I, Levic S, Pantic M, Matijasevic D, Mitric M, Pavlovic V, Dimitrijevic-Brankovic S (2017) Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. Carbohydr Polym 165:313–321

    Article  CAS  Google Scholar 

  186. Davoodbasha M, Kim S-C, Lee S-Y, Kim J-W (2016) The facile synthesis of chitosan based silver nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy. Arch Biochem Biophys 605:49–58

    Article  CAS  Google Scholar 

  187. Sá NMSM, Mattos ALA, Silva LMA, Brito ES, Rosa MF, Azeredo HMC (2020) From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int J Biol Macromol S0141–8130(20):34032

    Google Scholar 

  188. Abu Elella MH, Mohamed RR, Abdel-Aziz MM, Sabaa MW (2018) Green synthesis of antimicrobial and antitumor N, N, N-trimethyl chitosan chloride/poly (acrylic acid)/silver nanocomposites. Int J Biol Macromol 111:706–716

    Article  CAS  Google Scholar 

  189. Mathew S, Mathew J, Radhakrishnan EK (2019) Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. J Polym Res 26:223–233

    Article  CAS  Google Scholar 

  190. Jabbar AH, Mezan SO, Tuama AN, Hamzah MQ, Ameruddin ASB, Agam MA (2019) Enhanced bioactivity of polystyrene-silver nanocomposite (PS/Ag NCs)-an antimicrobial study. AIP Conf Proc 2151(1):020002

    Article  CAS  Google Scholar 

  191. Noohpisheh Z, Amiri H, Farhadi S, Mohammadi-Gholami A (2020) Green synthesis of Ag-ZnO nanocomposites using Trigonella foenum-graecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc 240:118595

    Article  CAS  Google Scholar 

  192. Mei L, Xu Z, Shi Y, Lin C, Jiao S, Zhang L, Li P (2020) Multivalent and synergistic chitosan oligosaccharide-Ag nanocomposites for therapy of bacterial infection. Sci Rep 10(1):10011

    Article  CAS  Google Scholar 

  193. Siripatrawan U, Kaewklin P (2018) Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids 84:125–134

    Article  CAS  Google Scholar 

  194. Guom Q, Lan T, Chen Y, Xu Y, Peng J, Tao L, Shen X (2019) Enhanced of antibacterial activity of antibiotic-functionalized silver nanocomposites with good biocompatibility. J Mater Sci—Mater Med 30:34–43

    Article  CAS  Google Scholar 

  195. Abdelwahab NA (2015) Shukry N, Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr Polym 115:276–284

    Article  CAS  Google Scholar 

  196. El Zowalaty ME, Al Ali SHH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ (2015) The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomed 10:3269

    Article  CAS  Google Scholar 

  197. Ahmadi Y, Yadav M, Ahmad S (2019) Oleo-polyurethane-carbon nanocomposites: effects of in-situ polymerization and sustainable precursor on structure, mechanical, thermal, and antimicrobial surface-activity. Compos B 164:683–692

    Article  CAS  Google Scholar 

  198. Jannatyha N, Shojaee-Aliabadi S, Moslehishad M, Moradi E (2020) Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. Int J Biol Macromol S0141–8130(20):34013–34017

    Google Scholar 

  199. Nayak AK, Ahmed SA, Tabish M, Hasnain MS (2019) Natural polysaccharides in tissue engineering application. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 531–548

    Google Scholar 

  200. Hasnain MS, Nayak AK, Singh R, Ahmad F (2010) Emerging trends of natural-based polymeric systems for drug delivery in tissue engineering applications. Science J UBU 1(2):1–13

    Google Scholar 

  201. Meskinfam M, Sadjadi MA, Jazdarreh H, Zare K (2011) Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol 7(3):455–459

    Article  CAS  Google Scholar 

  202. Sadjadi M, Meskinfam M, Jazdarreh H (2010) Hydroxyapatite—starch nanobiocomposites synthesis and characterization. Int J Nano Dimen 1:57–63

    Google Scholar 

  203. Huang Y, Zhang X, Wu A, Xu H (2016) An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 6(40):33529–33536

    Article  CAS  Google Scholar 

  204. Chae T, Yang H, Leung V, Ko F, Troczynski T (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci Mater Med. 24:1885–1894

    Article  CAS  Google Scholar 

  205. Liu M, Dai L, Shi H, Xiong S, Zhou C (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 49:700–712

    Article  CAS  Google Scholar 

  206. Kawaguchi M, Fukushima T, Hayakawa T, Nakashima N, Inoue Y, Takeda S, Okamura K, Taniguchi K (2006) Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dental Mater J 25(4):719–725

    Article  CAS  Google Scholar 

  207. Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M, Mano JF (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods 17:717–730

    Article  CAS  Google Scholar 

  208. Patel DK, Dutta SD, Hexiu J, Ganguly K, Lim KT (2020) Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering. Int J Biol Macromol S0141–8130(20):34010–34011

    Google Scholar 

  209. Pathmanapan S, Periyathambi P, Anandasadagopan SK (2020) Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair—in vitro and in vivo study. Nanomedicine 29:102251

    Article  CAS  Google Scholar 

  210. Saber-Samandari S, Saber-Samandari S (2017) Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Mater Sci Eng C Mater Biol Appl 75:721–732

    Article  CAS  Google Scholar 

  211. Xie X, Hu K, Fang D, Shang L, Tran SD, Cerruti M (2015) Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7:7992–8002

    Article  CAS  Google Scholar 

  212. Bhowmick A, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP (2017) Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Int J Biol Macromol 95:348–356

    Article  CAS  Google Scholar 

  213. Bhowmick A, Banerjee SL, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP (2018) Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Int J Biol Macromol 106:11–19

    Article  CAS  Google Scholar 

  214. De Santis R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, Wilde CJ, Ambrosio L (2015) Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11:1236–1246

    Article  CAS  Google Scholar 

  215. Patel A, Zaky SH, Schoedel K, Li H, Sant V, Beniash E, Sfeir C, Stolz DB, Sant S (2020) Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration. Acta Biomater 112:262–273

    Article  CAS  Google Scholar 

  216. Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 64:416–427

    Article  CAS  Google Scholar 

  217. Liu S, Sun Y, Fu Y, Chang D, Fu C, Wang G, Liu Y, Tay FR, Zhou Y (2016) Bioinspired collagen-apatite nanocomposites for bone regeneration. J Endod 42:1226–1232

    Article  Google Scholar 

  218. Shakir M, Jolly R, Khan MS, Rauf A, Kazmi S (2016) Nano-hydroxyapatite/beta-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Int J Biol Macromol 93:276–289

    Article  CAS  Google Scholar 

  219. Samadikuchaksaraei A, Gholipourmalekabadi M, Ezadyar EE, Azami M, Mozafari M, Johari B, Kargozar S, Jameie SB, Korourian A, Seifalian AM (2016) Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A 104:2001–2010

    Article  CAS  Google Scholar 

  220. Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M (2013) A nano-hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomater 34:2947–2959

    Article  CAS  Google Scholar 

  221. Nazeer MA, Yilgör E, Yilgör I (2017) Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohydr Polym 175:38–46

    Article  CAS  Google Scholar 

  222. Mirza S, Jolly R, Zia I, Saad Umar M, Owais M, Shakir M (2020) Bioactive gum Arabic/κ-Carrageenan-incorporated nano-hydroxyapatite nanocomposites and their relative biological functionalities in bone tissue engineering. ACS Omega 5(20):11279–11290

    Article  CAS  Google Scholar 

  223. Griffin M, Kalaskar D, Butler P (2019) Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering. J Nanobiotechnol 17(1):51

    Article  Google Scholar 

  224. Zhou Y, Liang K, Zhao S, Zhang C, Li J, Yang H, Liu X, Yin X, Chen D, Xu W, Xiao P (2018) Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Int J Biol Macromol 108:383–390

    Article  CAS  Google Scholar 

  225. Mirmusavi MH, Zadehnajar P, Semnani D, Karbasi S, Fekrat F, Heidari F (2019) Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Int J Biol Macromol 132:822–835

    Article  CAS  Google Scholar 

  226. Stocco TD, Antonioli E, Elias CMV, Rodrigues BVM, Siqueira IAWB, Ferretti M, Marciano FR, Lobo AO (2019) Cell viability of porous poly(d, l-lactic acid)/vertically aligned carbon nanotubes/nanohydroxyapatite scaffolds for osteochondral tissue engineering. Materials (Basel) 12(6):849

    Article  CAS  Google Scholar 

  227. Kim HJ, Lee JS, Park JM, Lee S, Hong SJ, Park JS, Park KH (2020) Fabrication of nanocomposites complexed with gold nanoparticles on polyaniline and application to their nerve regeneration. ACS Appl Mater Interfaces 12(27):30750–30760

    Article  CAS  Google Scholar 

  228. Homaeigohar S, Tsai TY, Young TH, Yang HJ, Ji YR (2019) An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering. Carbohydr Polym 224:115112

    Article  CAS  Google Scholar 

  229. Dolkhani S, Najafpour A, Mohammadi R (2020) Fabrication and transplantation of chitosan-selenium biodegradable nanocomposite conduit on transected sciatic nerve: a novel study in rat model. Neurol Res 42(6):439–450

    Article  CAS  Google Scholar 

  230. Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh Sabet M, Faridi-Majidi R, Ghanbari H (2019) Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech 82(8):1316–1325

    Article  CAS  Google Scholar 

  231. Scholz M-S, Blanchfield JP, Bloom LD, Coburn BH, Elkington M, Fuller JD, Gilbert ME, Muflahi SA, Pernice MF, Rae SI, Trevarthen JA, White SC, Weaver PM, Bond IP (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Comp Sci Technol 71:1791–1803

    Article  CAS  Google Scholar 

  232. Ghanbari H, Radenkovic D, Marashi SM, Parsno S, Roohpour N, Burriesci G, Seifalian AM (2016) Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material. Biointerphases 11(2):029801

    Article  CAS  Google Scholar 

  233. Dabees S, Kamel BM, Tirth V, Elshalakny AB (2020) Experimental design of Al2O3/MWCNT/HDPE hybrid nanocomposites for hip joint replacement. Bioengineered 11(1):679–692

    Article  CAS  Google Scholar 

  234. Swain SK, Gotman I, Unger R, Gutmanas EY (2017) Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Mater Sci Eng C 78:88–95

    Article  CAS  Google Scholar 

  235. Schlaubitz S, Derkaoui SM, Marosa L et al (2014) Pullulan/dextran/nHA macroporous composite beads for bone repair in a femoral condyle defect in rats. PLoS ONE 9:e110251

    Google Scholar 

  236. Garai S, Sinha A (2014) Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts. Colloids Surf B Biointerf 115:182–190

    Google Scholar 

  237. Johari B, Kadivar M, Lak S, Gholipourmalekabadi M, Urbanska AM, Mozafari M, Ahmadzadehzarajabad M, Azarnezhad A, Afshari S, Zargan J, Kargozar S (2016) Osteoblast-seeded bioglass/gelatin nanocomposite: a promising bone substitute in critical-size calvarial defect repair in rat. Int J Artif Org 39:524–533

    Article  CAS  Google Scholar 

  238. Medupin RO, Abubakre OK, Abdulkareem AS, Muriana RA, Abdulrahman AS (2019) Carbon nanotube reinforced natural rubber nanocomposite for anthropomorphic prosthetic foot purpose. Sci Rep 9(1):20146

    Article  CAS  Google Scholar 

  239. Manju V, Iyer S, Menon D, Nair SV, Nair MB (2019) Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. Mater Sci Eng C Mater Biol Appl 104:109864

    Article  CAS  Google Scholar 

  240. Liu X, Zhao K, Gong T, Song J, Bao C, Luo E, Weng J, Zhou S (2014) Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromol 15:1019–1030

    Article  CAS  Google Scholar 

  241. Hagiwara Y, Nakajima K (2016) Use of ceria-stabilized zirconia/alumina nanocomposite for fabricating the frameworks of removable dental prostheses: a clinical report. J Prosthet Dent 116(2):166–171

    Article  CAS  Google Scholar 

  242. Brown EE, Hu D, Abu Lail N, Zhang X (2013) Potential of nanocrystalline cellulose-fibrin nanocomposites for artificial vascular graft applications. Biomacromol 14(4):1063–1071

    Article  CAS  Google Scholar 

  243. Mohammadi H, Boughner D, Millon LE, Wan WK (2009) Design and simulation of a poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng H 223:697–711

    Article  CAS  Google Scholar 

  244. Ang HY, Toong D, Chow WS, Seisilya W, Wu W, Wong P, Venkatraman SS, Foin N, Huang Y (2018) Radiopaque fully degradable nanocomposites for coronary stents. Sci Rep 8(1):17409

    Article  CAS  Google Scholar 

  245. Pataquiva Mateus AY, Ferraz MP, Monteiro FJ (2007) Nano-hydoxyapatite microspheres for periodontitis treatment: preparation and cytotoxicity studies. Eur Cells Mater 14:85

    Google Scholar 

  246. Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res Part A 81A:994–1004

    Article  CAS  Google Scholar 

  247. Madhumathil K, Jeevana Rekha TS, Sampath Kumar TS (2018) Tailoring antibiotic release for the treatment of periodontal infrabony defects using bioactive gelatin-alginate/apatite nanocomposite films. J Drug Deliv Sci Tech 43:57–64

    Article  CAS  Google Scholar 

  248. Chen M-H (2010) Update on dental nanocomposites. J Dental Res 89:549–560

    Article  CAS  Google Scholar 

  249. Choi AH, Ben-Nissan B (2016) Applications of hydroxyapatite nanocoatings and nanocomposite coatings in dentistry. JSM Dent Surg 1:1002

    Google Scholar 

  250. Cohen BD, Combe EC (1994) Development of new adhesive pulp capping materials. Dent Update 21:57–62

    CAS  Google Scholar 

  251. Fioretti F, Mendoza-Palomares C, Helms M, Al Alam D, Richert L, Arntz Y, Rinckenbach S, Garnier F, Haïkel Y, Gangloff SC, Benkirane-Jessel N (2010) Nanostructured assemblies for dental application. ACS Nano 4:3277–3287

    Article  CAS  Google Scholar 

  252. Panahi F, Rabiee SM, Reza Shidpour R (2017) Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposites for root-end dental application. Mater Sci Eng C 80:631–641

    Google Scholar 

  253. Zhang T, Ying D, Qi M, Li X, Fu L, Sun X, Wang L, Zhou Y (2019) Anti-biofilm property of bioactive upconversion nanocomposites containing chlorin e6 against periodontal pathogens. Molecules 24(15):2692

    Article  CAS  Google Scholar 

  254. Furtos G, Rivero G, Rapuntean S, Abraham GA (2017) Amoxicillin-loaded electrospun nanocomposite membranes for dental applications. J Biomed Mater Res B Appl Biomater 105(5):966–976

    Article  CAS  Google Scholar 

  255. Sowmya S, Mony U, Jayachandran P, Reshma S, Kumar RA, Arzate H, Nair SV, Jayakumar R (2017) Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv Healthc Mater 6(7). https://doi.org/10.1002/adhm.201601251

  256. Farooq A, Yar M, Khan AS, Shahzadi L, Siddiqi SA, Mahmood N, Rauf A, Qureshi ZU, Manzoor F, Chaudhry AA, ur Rehman I (2015) Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C Mater Biol Appl 1(56):104–113

    Google Scholar 

  257. Wang L, Xie X, Imazato S, Weir MD, Reynolds MA, Xu HHK (2016) A protein-repellent and antibacterial nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens. Mater Sci Eng C Mater Biol Appl 67:702–710

    Article  CAS  Google Scholar 

  258. Sancilio S, Gallorini M, Di Nisio C, Marsich E, Di Pietro R, Schweikl H, Cataldi A (2018) Alginate/hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation. Stem Cells Int 2:9643721

    Google Scholar 

  259. Aramwit P (2016) Introduction to biomaterials for wound healing. In: Agren M (ed) Wound healing biomaterials, vol 2. Woodhead Publishing, pp 1–38

    Google Scholar 

  260. Sezer AD, Cevher E (2011) Biopolymers as wound healing materials: challenges and new strategies. In: Pignatello R (ed) Biomaterials applications for nanomedicine. InTech, Croatia, pp 383–414

    Google Scholar 

  261. Shah A, Buabeid MA, Arafa EA, Hussain I, Li L, Murtaza G (2019) The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm 564:22–38

    Article  CAS  Google Scholar 

  262. Kumar PTS, Laskmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629

    Article  CAS  Google Scholar 

  263. Sandri G, Aguzzi C, Rossi S, Bonferoni MC, Bruni G, Boselli C, Cornaglia AI, Riva F, Viseras C, Caramella C, Ferrari F (2017) Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater 15(57):216–224

    Article  CAS  Google Scholar 

  264. Anisha BS, Sankar D, Mohandas A, Chennazhi KP, Nair SV, Jayakumar R (2013) Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydr Polym 92:1470–1476

    Article  CAS  Google Scholar 

  265. Figueiredo AG, Figueiredo AR, Alonso-Varona A, Fernandes S, Palomares T, Rubio-Azpeitia E et al (2013) Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films. BioMedResearch Int, Article ID 698141, 14

    Google Scholar 

  266. Gonzaga VAM, Poli AL, Gabriel JS, Tezuka DY, Valdes TA, Leitão A, Rodero CF, Bauab TM, Chorilli M, Schmitt CC (2020) Chitosan-laponite nanocomposite scaffolds for wound dressing application. J Biomed Mater Res B Appl Biomater 108(4):1388–1397

    Article  CAS  Google Scholar 

  267. Tantiwatcharothai S, Prachayawarakorn J (2019) Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. Int J Biol Macromol 135:133–140

    Google Scholar 

  268. Sadeghianmaryan A, Yazdanpanah Z, Soltani YA, Sardroud HA, Nasirtabrizi MH, Chen X (2020) Curcumin-loaded electrospun polycaprolactone/montmorillonite nanocomposite: wound dressing application with anti-bacterial and low cell toxicity properties. J Biomater Sci Polym Ed 31(2):169–187

    Article  CAS  Google Scholar 

  269. Khalid A, Khan R, Ul-Islam MR, Khan T, Wahid F (2017) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221

    Article  CAS  Google Scholar 

  270. Kamel NA, El-messieh SLA, Saleh NM (2017) Chitosan/banana peel powder nanocomposites for wound dressing application: preparation and characterization. Mater Sci Eng C 72:543–550

    Article  CAS  Google Scholar 

  271. García-Villén F, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S, Grisoli P, Ruggeri M, Ferrari F, Sandri G, Viseras C (2019) Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomed 10(14):5051–5060

    Article  Google Scholar 

  272. Gunes S, Tamburaci S, Tihminlioglu F (2019) A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. J Mater Sci Mater Med 31(1):7

    Google Scholar 

  273. Razali MH, Ismail NA, Mat Amin KA (2020) Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: effect of TiO2 nanotubes concentration. Int J Biol Macromol 153:1117–1135

    Article  CAS  Google Scholar 

  274. Manuja A, Raguvaran R, Kumar B, Kalia A, Tripathi BN (2020) Accelerated healing of full thickness excised skin wound in rabbits using single application of alginate/acacia based nanocomposites of ZnO nanoparticles. Int J Biol Macromol 155:823–833

    Article  CAS  Google Scholar 

  275. Prabhakar O, Matta S (2020) Fabrication and characterization of carboxymethyl guar gum nanocomposite for application of wound healing. Int J Biol Macromol S0141–8130(20):34082–34084

    Google Scholar 

  276. Yang M, Ward J, Choy KL (2020) Nature-inspired bacterial cellulose/methylglyoxal (BC/MGO) nanocomposite for broad-spectrum antimicrobial wound dressing. Macromol Biosci e2000070

    Google Scholar 

  277. Fan Y, Wu W, Lei Y, Gaucher C, Pei S, Zhang J, Xia X (2019) Edaravone-loaded alginate-based nanocomposite hydrogel accelerated chronic wound healing in diabetic mice. Mar Drugs 17(5):285. https://doi.org/10.3390/md17050285

    Article  CAS  Google Scholar 

  278. Montaser AS, Abdel-Mohsen AM, Ramadan MA, Sleem AA, Sahffie NM, Jancar J, Hebeish A (2016) Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int J Biol Macromol 92:739–747

    Article  CAS  Google Scholar 

  279. Koneru A, Dharmalingam K, Anandalakshmi R (2020) Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications. Int J Biol Macromol 148:833–842

    Article  CAS  Google Scholar 

  280. Renu S, Shivashangari KS, Ravikumar V (2020) Incorporated plant extract fabricated silver/poly-D, l-lactide-co-glycolide nanocomposites for antimicrobial based wound healing. Spectrochim Acta A Mol Biomol Spectrosc 228:117673

    Article  CAS  Google Scholar 

  281. Zhai M, Xu Y, Zhou B, Jing W (2018) Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: characterization and biomedical application. J Photochem Photobiol B 180:253–258

    Article  CAS  Google Scholar 

  282. Li Y, Xu T, Tu Z, Dai W, Xue Y, Tang C, Gao W, Mao C, Lei B, Lin C (2020) Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 10(11):4929–4943

    Article  CAS  Google Scholar 

  283. Najafabadi SAA, Mohammadi A, Kharazi AZ (2020) Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Mater Sci Eng C Mater Biol Appl 115:110899

    Article  CAS  Google Scholar 

  284. Shariatinia Z (2019) Pharmaceutical applications of natural polysaccharides. In: Hasnain MS, Nayak AK (eds) Natural polysaccharides in drug delivery and biomedical applications. Academic Press, Elsevier Inc., pp 15–57

    Google Scholar 

  285. Lin J, Li Y, Li Y, Wu H, Yu F, Zhou S, Xie L, Luo F, Lin C, Hou Z (2015) Drug/dye-loaded, multifunctional peg-chitosan-iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Appl Mater Interfaces 7(22):11908–11920

    Article  CAS  Google Scholar 

  286. Fu F, Yang B, Hu X, Tang H, Zhang Y, Xu X, Zhang Y, Touhid SSB, Liu X, Zhu Y, Zhou J, Yao J (2020) Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection. Chem Eng J 392:123693

    Article  CAS  Google Scholar 

  287. Liu Y, Wang MK, Zhao F, Xu ZA, Dong SJ (2005) The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 21:984–988

    Article  CAS  Google Scholar 

  288. Wang Z, Jia T, Sun Q, Kuang Y, Liu B, Xu M, Zhu H, He F, Gai S, Yang P (2020) Construction of Bi/phthalocyanine manganese nanocomposite for trimodal imaging directed photodynamic and photothermal therapy mediated by 808 nm light. Biomaterials 228:119569

    Article  CAS  Google Scholar 

  289. Zhu T, Ma X, Chen R, Ge Z, Xu J, Shen X, Jia L, Zhou T, Luo Y, Ma T (2017) Using fluorescently-labeled magnetic nanocomposites as a dual contrast agent for optical and magnetic resonance imaging. Biomater Sci 5(6):1090–1100

    Article  CAS  Google Scholar 

  290. Kim T, Jang H, Kim S, Lee JH, Kim SY, Jeon NL, Song JM, Min DH (2018) Synthesis of fluorescent Au nanocrystals-silica hybrid nanocomposite (FLASH) with enhanced optical features for bioimaging and photodynamic activity. Langmuir 34(1):173–178

    Article  CAS  Google Scholar 

  291. Wang X, Dai J, Wang X, Hu Q, Huang K, Zhao Z, Lou X, Xia F (2019) MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy. Talanta 1(202):591–599

    Article  CAS  Google Scholar 

  292. Tan MJH, Ravichandran D, Ang HL, Ong EWY, Lim CQX, Kam GMQ, Kumar AP, Tan ZK (2019) Magneto-fluorescent perovskite nanocomposites for directed cell motion and imaging. Adv Healthc Mater 8(23):e1900859

    Article  CAS  Google Scholar 

  293. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron 52:13–19

    Article  CAS  Google Scholar 

  294. Radhapyari K, Kotoky P, Das MR, Khan R (2013) Graphene–polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111:47–53

    Article  CAS  Google Scholar 

  295. Chen Z, Liu X, Liu D, Li F, Wang L, Liu S (2020) Ultrasensitive electrochemical DNA biosensor fabrication by coupling an integral multifunctional zirconia-reduced graphene oxide-thionine nanocomposite and exonuclease I-assisted cleavage. Front Chem 8:521

    Article  CAS  Google Scholar 

  296. Jain R, Tiwari DC, Shrivastava S (2014) Polyaniline–bismuth oxide nanocomposite sensor for quantification of anti-parkinson drug pramipexole in solubilized system. Mater Sci Eng B 185:53–59

    Article  CAS  Google Scholar 

  297. Yang Y, Zhang S, Kang M, He L, Zhao J, Zhang H et al (2015) Selective detection of silver ions using mushroom-like polyaniline and gold nanoparticle nanocomposite-based electrochemical DNA sensor. Anal Biochem 490:7–13

    Article  CAS  Google Scholar 

  298. Zhu Q, Gao F, Yang Y, Zhang B, Wang W, Hu Z et al (2015) Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor. Sens Actuat B 207:819–826

    Article  CAS  Google Scholar 

  299. Sheta SM, El-Sheikh SM, Osman DI, Salem AM, Ali OI, Harraz FA, Shousha WG, Shoeib MA, Shawky SM, Dionysiou DD (2020) A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalton Trans 49(26):8918–8926

    Article  CAS  Google Scholar 

  300. Wang Z, Li F, Zhang L, Qian J, Cao S (2020) A phase-transfer-assisted synthesis of cysteine-Ag nanoparticles/graphene oxide nanocomposite and its enhanced performance in antibiosis and biosensing. Nanotechnology. https://doi.org/10.1088/1361-6528/aba05c

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, A.K., Alkahtani, S., Hasnain, M.S. (2021). Biomedical Nanocomposites. In: Nayak, A.K., Hasnain, M.S. (eds) Biomedical Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4753-3_3

Download citation

Publish with us

Policies and ethics