Skip to main content

Principles of AeroHydro Culture

  • Chapter
  • First Online:
Tropical Peatland Eco-management

Abstract

An innovative culture system for tropical peatlands has been developed. AeroHydro culture is defined as plant cultivation at high ground water levels (GWLs) with supplements applied to the peatland surface. In peatland ecosystems, oxygen is usually the most serious limiting factor due to the very low levels of oxygen solubilization into water. Nutrient deficiencies subsequently develop because of both low nutrient adsorption due to the low oxygen level in the peat water and the low nutrient content of peat. However, trees that grow in native peatlands with high GWL have developed two strategies: forming aerial roots [for oxygen absorption] and lateral roots that grow into mounds that accumulate litter, called mound roots [for nutrient absorption]. Thus, AeroHydro culture mimics native peatland ecosystems. Both nutrients and oxygen are applied to the peatland surface as a combination of natural materials, organic matter, microorganisms, plant growth-promoting substances, and matrix materials.

AeroHydro culture is therefore an ideal culture system for tropical peatlands because it allows enough oxygen and nutrients to be applied from the peatland surface and enough water to be absorbed from the peatlands. Here, the most important key elements of AeroHydro culture and how to implement AeroHydro culture practices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander IJ, Lee SS (2005) Mycorrhizas and ecosystem processes in tropical rain forest: implications for diversity. In: Burslem D, Pinard M, Hartley S (eds) Biotic interactions in the tropics. Cambridge University Press, Cambridge, pp 165–2013

    Chapter  Google Scholar 

  • Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A (2010) Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7:3403–3419

    Article  CAS  Google Scholar 

  • Bartholome E, Belward AS, Achard F, Bartalev S, Carmona-Moreno C, Eva H, Sitbig HJ (2002) GLC 2000: global land cover mapping for the year 2000. Project Status, November

    Google Scholar 

  • BBSDLP (2011) Peta Lahan Gambut Indonesia Skala 1:250.000. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Pertanian dan Pengembangan Pertanian. ISBN: 978-602-8977-16-6

    Google Scholar 

  • BBSDLP (2019) Peta Lahan Gambut Indonesia Skala 1:50.000. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian. ISBN: 978-602-459-507-4

    Google Scholar 

  • Brearley FQ (2012) Ectomycorrhizal associations of the dipterocarpaceae. Biotropica 44(5):637–648

    Article  Google Scholar 

  • Cairo PC, de Armas JM, Artiles PT, Martin BD, Carrazana RJ, Lopez OR (2017) Effect of zeolite and organic fertilizers on soil quality and yield of sugarcane. Austr J Crop Sci 11:733–738

    Article  CAS  Google Scholar 

  • Dommain R, Dittrich I, Giesen W, Joosten H, Rais DS, Silvius M, Wibisono ITC (2016) Ecosystem services, degradation and restoration of peat swamps in the Southeast Asian tropics. In: Bonn A, Allott T, Evans M, Stoneman R, Joosten H (eds) Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • FAO (2016) Facts of Indonesia peatland and paludiculture practices. http://www.fao.org/indonesia/news/detail-events/en/c/414437/. Accessed 26 October 2019

  • Gani A (2009) Potensi Arang Hayati Biochar sebagai Komponen Teknologi Perbaikan Produktivitas Lahan Pertanian. Iptek Tanaman Pangan 4(1):35–36

    Google Scholar 

  • Giesen W (2015) Utilising non-timber forest products to conserve Indonesia’s peat swamp forests and reduce carbon emissions. J Indones Nat Hist 3:10–19

    Google Scholar 

  • Goenadi DH (2004) Teknologi pengolahan zeolit menjadi bahan yang memiliki nilai ekonomi tinggi. J Zeolit Indonesia 3(1):42–49

    Google Scholar 

  • Graham LLB, Turjaman M, Page SE (2013) Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: effects of mycorrhizae and level of disturbance. Wetl Ecol Manag 21(5):307–321

    Article  Google Scholar 

  • Hashidoko Y, Gotou Y, Osaki M, Purnomo E, Suwido LH, Tahara S (2006) Characterization and ecological role of free-living nitrogen-fixing bacteria isolated from the rhizoplane of Melastoma malabathricum inhabiting acidic plain lands in Kalimantan. Tropics 15:365

    Article  Google Scholar 

  • Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. J Environ Pollut 195:257–266

    Article  CAS  Google Scholar 

  • Helbert TM, Nara K (2019) Ectomycorrhizal fungal communities of secondary tropical forests dominated by Tristaniopsis in Bangka Island, Indonesia. PLoS ONE 14(9):e0221998

    Article  CAS  Google Scholar 

  • Hogberg P (1982) Mycorrhizal association in some woodland and forest trees and shrubs in Tanzania. New Phytol 92:407–415

    Article  Google Scholar 

  • Laird DA, Koskinen WC (2008) Triazine soil interactions. In: LeBaron HM, McFarland JE, Burnside OC (eds) The triazine herbicides. 50 years revolutionizing agriculture. Elsevier, Oxford, pp 275–299

    Chapter  Google Scholar 

  • Langner A, Siegert F (2009) Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob Chang Biol 15:48–62

    Article  Google Scholar 

  • Lee SS (1998) Root symbiosis and nutrition. In: Appanah S, Turnbull JM (eds) A review of dipterocarps: taxonomy, ecology, and silviculture. Center for International Forestry Research, Bogor, pp 99–114

    Google Scholar 

  • Maltby E, Immirzi CP, Safford RJ (1996) Tropical lowland peatlands of Southeast Asia. IUCN, Gland

    Google Scholar 

  • Marwanto S, Watanabe T, Iskandar W, Sabiham S, Funakawa S (2018) Effect of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. J Soil Sci Plant Nutr 64(3):386–395

    Article  CAS  Google Scholar 

  • Maulana AF, Turjaman M, Sato T, Hashimoto Y, Cheng W, Tawaraya K (2017) Growth response of four leguminous trees to native arbuscular mycorrhizal fungi from tropical forest in Indonesia. Int J Plant Sci 20(3):1–13

    Google Scholar 

  • Maulana AF, Turjaman M, Sato T, Hashimoto Y, Cheng W, Tawaraya K (2018) Isolation of endophytic fungi from tropical forest in Indonesia. Symbiosis 76(2):151–162

    Article  CAS  Google Scholar 

  • Miettinen J, Liew SC (2010) Status of peatland degradation and development in Sumatra and Kalimantan. Ambio 39(5- 6):394–401. https://doi.org/10.1007/s13280-010-0051-2

    Article  Google Scholar 

  • Mizuno K, Fujita MS, Kawai S (2016) Catastrophe & regeneration in Indonesia’s peatlands: ecology, economy & society. NUS Press, Singapore, p 466

    Google Scholar 

  • Mumpton FA (1999) La roca magica: uses of natural zeolites in agriculture and industry. Proc Natl Sci U S A 96:3463–3470

    Article  CAS  Google Scholar 

  • Ogawa M, Okimori Y (2010) Pioneering works in biochar research, Japan. Soil Res 48:489–500. https://doi.org/10.1071/SR10006

    Article  CAS  Google Scholar 

  • Osaki M, Tsuji N (2016) Tropical peatland ecosystem. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55681-7

    Book  Google Scholar 

  • Page SE, Rieley JO, Wust R (2006) Lowland tropical peatlands of Southeast Asia. Peatlands evolution and records of environmental and climate changes

    Google Scholar 

  • Ramesh K, Damodar D (2011) Zeolites and their potential uses in agriculture. Adv Agron 113:219–235

    Article  Google Scholar 

  • Rehakova M, Cuvanova S, Dzivak M, Rimar J, Gaval’ova Z (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptiulolite type. Curr Opin Solid State Mater Sci 8:397–404

    Article  CAS  Google Scholar 

  • Samra A, Dumas-Gaudot E, Gianinazzi S (1997) Detection of symbiosis-related polypeptides during the early stages of the establishment of arbuscular mycorrhiza between Glomus mosseae and Pisum sativum roots. New Phytol 135:711–722

    Article  CAS  Google Scholar 

  • Santi LP (2017) Pemanfaatan arang pirolisis asal cangkang kelapa sawit untuk retensi hara dan karbon pada media tanah Typic Hapludult. Jurnal Tanah dan Iklim 41(1):9–16

    Article  Google Scholar 

  • Santi LP, Goenadi DH (2010a) The potential use of pyrolysis charcoal (biochar) for Ultisol soil bio-ameliorant. In: Proc. 3rd, Internat. Biochar Conf. 2010. Rio de Jainiro, Brazil, pp 12–15

    Google Scholar 

  • Santi LP, Goenadi DH (2010b) Pemanfaatan bio-char sebagai pembawa mikroba untuk pemantap agregat tanah Ultisol dari Taman Bogo-Lampung. Menara Perkebunan 78(2):11–22

    Google Scholar 

  • Sato A, Nishida T, Shinano T, Osaki M (2006) Analysis of nitrogen-fixing bacteria associated with the rhizosphere of Melastoma malabathricum. In International Symposium on “JSPS-LIPI Core University Program: International Symposium on Nature and Land Management of Tropical Peat land in South East Asia”, Conference Hall, Bogor Botanical Garden, Bogor, Indonesia (poster)

    Google Scholar 

  • Schollhorn R (1984) Intercalation compounds. Zeolites. In: Atwood JL, Davies JED, Mac Nicols DD (eds) Inclusion compounds, vol I. Academic, London, pp 260–265

    Google Scholar 

  • Sitepu IR, Aryanto ON, Osaki M, Santoso E, Tahara S, Hashidoko Y (2007) Screening of rhizobacteria from dipterocarp seedlings and saplings for the promotion of early growth of Shorea selanica seedlings. Tropics 16(3):245–252

    Article  Google Scholar 

  • Smits WTM (1994) Dipterocarpaceae: mycorrhizae and regeneration. Tropenbos Foundation

    Google Scholar 

  • Supriyadi, Nunik ED, Djumali (2017) The influence of granular and briquette compound fertilizers on growth, productivity, and sugar content of sugarcane. Bull Tanaman Tembakau Serat Minyak Ind 9(1):34–41. https://doi.org/10.21082/btsm.v9n1.2017.34-41

    Article  Google Scholar 

  • Turjaman M, Tamai Y, Segah H, Limin SH, Cha JY, Osaki M, Tawaraya K (2005) Inoculation with the ectomycorrhizal fungi Pisolithus arhizus and Scleroderma sp. improve the early growth of Shorea pinanga nursery seedlings. New For 30:67–73

    Article  Google Scholar 

  • Turjaman M, Tamai Y, Segah H, Limin SH, Cha JY, Osaki M, Tawaraya K (2006) Increase in early growth and nutrient uptake of Shorea seminis seedlings inoculated with two Ectomycorrhizal fungi. J Trop For Sci 18(4):166–172

    Google Scholar 

  • Turjaman M, Santoso E, Sitepu IR, Tawaraya K, Purnomo E, Tambunan R, Osaki M (2009) Mycorrhizal fungi increased early growth of tropical tree seedlings in adverse soil. J Forest Res 6(1):17–25

    Google Scholar 

  • Turjaman M, Santoso E, Susanto A, Gaman S, Limin SH, Tamai Y, Osaki M, Tawaraya K (2011) Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forests. Wetl Ecol Manag 19:331–339

    Article  Google Scholar 

  • Wijedasa L, Jauhiainen J, Könönen M, Lampela M, Vasander H, Leblanc MC, Evers S, Smith T, Yule C, Varkkey H, Lupascu M, Parish F, Singleton I, Clements GR, Abdul Aziz S, Harrison M, Cheyne S, Anshari G, Meijaard E, Andersen R (2017) Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob Chang Biol 23:83

    Article  Google Scholar 

  • Winsley P (2007) Biochar and bioenergy production for climate change. N Z Sci Rev 64(1):1–10

    Google Scholar 

  • Yamato M, Okimori Y, Wibowo I, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495. https://doi.org/10.1111/j.1747-0765.2006.00065.x

    Article  CAS  Google Scholar 

  • Yanbuaban M, Nuyim T, Matsubara T, Watanabe T, Osaki M (2007) Nutritional ecology of plants grown in a tropical peat swamp. Tropics 16:31–39

    Article  Google Scholar 

  • Yulianti N, Hayasaka H, Usup A (2012) Recent forest and peat fire trends in Indonesia: the latest decade by MODIS hotspot data. Glob Environ Res 16:105–116

    Google Scholar 

Download references

Acknowledgments

Many thanks to the SATREPS project founded by JICA (Japan International Cooperation Agency) and JST (Japan Science and Technology Agency), the IJ-REDD project founded by JICA, and the JICA-JPS (Japan Peatland Society)-BRG (Peatland Restoration Agency, Indonesia) program founded mainly by JICA, PT. Wana Subur Lestari & PT. Mayangkara Tanaman Industri, BRG through the Norwegian grant via UNOPS and WRI. Thank you for the support in the field by Beringin Jaya Cooperatives (Siak) and CIMTROP, University of Palangka Raya (Central Kalimantan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmawati I. Wetadewi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wetadewi, R.I. et al. (2021). Principles of AeroHydro Culture. In: Osaki, M., Tsuji, N., Foead, N., Rieley, J. (eds) Tropical Peatland Eco-management. Springer, Singapore. https://doi.org/10.1007/978-981-33-4654-3_7

Download citation

Publish with us

Policies and ethics