Skip to main content

Understanding Fabrication and Properties of Magnesium Matrix Nanocomposites

  • Chapter
  • First Online:
Recent Advances in Layered Materials and Structures

Abstract

Magnesium-based metal matrix nanocomposites (MMNCs) are new class materials which can be used widely in aerospace, biomedical, electronics and automobile industries due to their low density, sustainability, good specific strength and better tribological properties. Performance of MMNCs depends on several factors, i.e., composition and combination of reinforcement, processing methods, etc. Present study tries to review available literatures to discuss about the role of those factors on mechanical properties, tribological properties and corrosion behaviors of magnesium-based MMNCs. In this study, liquid metallurgy-based primary processing methods and secondary methods are discussed in details with the help of available literatures. Roles of ultrasonic treatment, cavitation and acoustic streaming on distribution of nanoparticles are discussed in details. Strengthening mechanisms between particle and matrix metal are also presented. Effects of particles like Al2O3, SiC, WC, TiB2, CNT on mechanical, tribological and corrosion behavior are discussed. Mechanical properties (UTS, YS, microhardness, creep behavior) are mainly discussed and available literatures revealed that the presence of nanoparticles normally enhance these properties. Literature on tribological behavior yielded that nanoparticles help to enhance wear and friction behavior of Mg-MMNCs at room and elevated temperatures. Effects of tribological parameters (load, sliding speed, sliding distance) are also discussed. But researchers are split into two groups about corrosion characteristics of magnesium composites. Some researchers reported that corrosion resistance is decreased due to presence of reinforcement while others concluded that corrosion resistance is enhanced due to reinforcing particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah A, Malaki M, Baghizadeh E (2012) On the impact of ultrasonic cavitation bubbles. Proc. Inst. Mech. Eng Part C J Mech Eng Sci 226:681–694

    Article  Google Scholar 

  2. Abdullah A, Pak A, Abdullah MM, Shahidi A, Malaki M (2014) Study of the behavior of ultrasonic piezo-ceramic actuators by simulations. Electron Mater Lett 10:37–42

    Google Scholar 

  3. Akbari MK, Mirzaee O, Baharvandi H (2013) Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46:199–205

    Article  CAS  Google Scholar 

  4. Aung NN, Zhou W, Goh CS, Nai SML, Wei J (2010) Effect of carbon nanotubes on corrosion of Mg–CNT composites. Corros Sci 52(5):1551–1553

    Article  CAS  Google Scholar 

  5. Banerjee S, Poria S, Sutradhar G, Sahoo P (2019a) Corrosion behavior of AZ31-WC nano-composites. J Magnesium Alloys 7(4):681–695

    Article  CAS  Google Scholar 

  6. Banerjee S, Poria S, Sutradhar G, Sahoo P (2019b) Tribological behavior of Mg-WC nano-composites at elevated temperature. Mater Res Express 6(8):0865c6

    Google Scholar 

  7. Banerjee S, Poria S, Sutradhar G, Sahoo P (2019b) Dry sliding Tribological behavior of AZ31-WC nano-composites. J Magnesium Alloys 7:315–327

    Article  CAS  Google Scholar 

  8. Bao S, Li L, Hong Y, Hu Z (2010) Study on the fabrication of SiCp/AZ31 nanocomposites by high energy ultrasonic vibration and its characteristics. J Plasticity Eng 1:139–143

    Google Scholar 

  9. Bhingole PP, Chaudhari GP (2012) Synergy of nano carbon black inoculation and high intensity ultrasonic processing in cast magnesium alloys. Mater Sci Eng A 556:954–961

    Article  CAS  Google Scholar 

  10. Cao G, Choi H, Oportus J, Konishi H, Li X (2008) Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater Sci Eng A 494:127–131

    Article  CAS  Google Scholar 

  11. Cao G, Kobliska J, Konishi H, Li X (2008) Tensile properties and microstructure of SiC nanoparticle-reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation-based solidification processing. Metall Mater Trans A 39:880–886

    Article  CAS  Google Scholar 

  12. Chan WM, Cheng FT, Leung LK, Horylev RJ, Yue TM (1998) Corrosion behavior of magnesium alloy AZ91 and its MMC in NaCl solution. Corros Rev 16(1–2):43–52

    Article  CAS  Google Scholar 

  13. Chen K, Li ZQ, Zhou HZ, Wang WK (2007) Influence of high intensity ultrasonic vibration on microstructure of in-situ synthesized Mg2Si/Mg composite. T Nonferr Metals Soc 17:s391–s395

    CAS  Google Scholar 

  14. Chen LY, Xu JQ, Choi H, Pozuelo M, Ma XL, Bhowmick S, Yang JM, Mathaudhu S, Li XC (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543

    Article  CAS  Google Scholar 

  15. Chen LY, Peng JY, Xu JQ et al (2013) Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater 69:634–637

    Article  CAS  Google Scholar 

  16. Choi H, Alba-Baena N, Nimityongskul S et al (2011) Characterization of hot extruded Mg/SiC nanocomposites fabricated by casting. J Mater Sci 46:2991–2997

    Article  CAS  Google Scholar 

  17. Choi H, Sun Y, Slater BP, Konishi H, Li X (2012) AZ91D/TiB2 Nanocomposites fabricated by solidification nanoprocessing. Adv Eng Mater 14:291–295

    Article  CAS  Google Scholar 

  18. Cicco M, Konishi H, Cao G et al (2009) Strong, ductile magnesium-zinc nanocomposites. Metall Mater Trans A 40A:3038–3045

    Article  CAS  Google Scholar 

  19. Dai L, Ling Z, Bai Y (2001) Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos Sci Technol 61:1057–1063

    Article  CAS  Google Scholar 

  20. Dieringa H, Huang Y, Wittke P, Klein M, Walther F, Dikovits M, Poletti C (2013) Compression creep response of magnesium alloy DieMag422 containing barium compared with the commercial creep-resistant alloys AE42 and MRI230D. Mater Sci Eng 585:430–438

    Article  CAS  Google Scholar 

  21. Dieringa H, Katsarou L, Buzolin R, Szakács G, Horstmann M, Wolff M, Mendis C, Vorozhtsov S, StJohn D (2017) Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability. Metals 7:388

    Article  CAS  Google Scholar 

  22. Endo M, Hayashi T, Itoh I, Kim YA, Shimamoto D, Muramatsu H, Shimizu Y, Morimoto S, Terrones M, Iinou S, Koide S (2008) An anticorrosive magnesium/carbon nanotube composite. Appl Phys Lett 92(6):063105

    Google Scholar 

  23. Erman A, Groza J, Li X, Choi H, Cao G (2012) Nanoparticle effects in cast Mg-1 wt% SiCnano-composites. Mater Sci Eng A 558:39–43

    Article  CAS  Google Scholar 

  24. Eskin DG, Eskin GI (2014) Ultrasonic treatment of light alloy melts, 2nd edn. CRC Press, Boca Raton, FL, USA

    Book  Google Scholar 

  25. Eskin GI (1995) Cavitation mechanism of ultrasonic melt degassing. Ultrason Sonochem 2:S137–S141

    Article  CAS  Google Scholar 

  26. Eskin GI (1998) Ultrasonic treatment of light alloy metallic melts. Gordon and Breach Science Publishers, Amsterdam, The Netherlands

    Book  Google Scholar 

  27. Falcon LA, Bedolla B, Lemus J, Leon C, Rosales I, Gonzalez-Rodriguez JG (2011) Corrosion behavior of Mg–Al/TiC composites in NaCl solution. Int J Corros

    Google Scholar 

  28. Fukuda H, Szpunar JA, Kondoh K, Chromik R (2010) The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy. Corros Sci 52(12):3917–3923

    Article  CAS  Google Scholar 

  29. Funatsu K, Fukuda H, Takei R, Umeda J, Kondoh K (2013) Quantitative evaluation of initial galvanic corrosion behavior of CNTs reinforced Mg–Al alloy. Adv Powder Technol 24(5):833–837

    Article  CAS  Google Scholar 

  30. Ghasali E, Bordbar-Khiabani A, Alizadeh M, Mozafari M, Niazmand M, Kazemzadeh H, Ebadzadeh T (2019) Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Mater Chem Phys 225:331–339

    Article  CAS  Google Scholar 

  31. Gnanavelbabu A, Surendran KS, Kumar S (2020) Influence of ultrasonication power on grain refinement, mechanical properties and wear behaviour of AZ91D/nano-Al2O3 composites. Mater Res Express 7(1):016544

    Article  CAS  Google Scholar 

  32. Goh CS, Wei J, Lee LC, Gupta M (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A 423(1–2):153–156

    Article  CAS  Google Scholar 

  33. Goh CS, Wei J, Lee LC, Gupta M (2008) Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68(6):1432–1439

    Article  CAS  Google Scholar 

  34. Guo W, Wang Q, Ye B, Li X, Liu X, Zhou H (2012) Microstructural refinement and homogenization of Mg–SiC nanocomposites by cyclic extrusion compression. Mater Sci Eng A 556:267–270

    Article  CAS  Google Scholar 

  35. Habibnejad-Korayem M, Mahmudi R, Poole WJ (2009) Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater Sci Eng A 519(1–2):198–203

    Article  CAS  Google Scholar 

  36. Hassan SF, Gupta M (2007a) Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J Alloys Compd 429:176–183

    Article  CAS  Google Scholar 

  37. Hassan SF, Gupta M (2007b) Effect of Nano-ZrO2 particulates reinforcement on microstructureand mechanical behavior of solidification processed elemental Mg. J Compos Mater 41:2533–2543

    Article  CAS  Google Scholar 

  38. Hassan SF, Gupta M (2005) Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A 36:2253–2258

    Article  Google Scholar 

  39. Huang Y, Dieringa H, Kainer KU, Hort N (2014) Understanding effects of microstructural inhomogeneity on creep response—New approaches to improve the creep resistance in magnesium alloys. J Magnes Alloys 2:124–132

    Article  CAS  Google Scholar 

  40. Ishiwata Y, Komarov S, Takeda Y (2012) Investigation of acoustic streaming in aluminum melts exposed to high-intensity ultrasonic irradiation. In: Proceedings of the 13th international conference on aluminum alloys (ICAA13), Pittsburgh, PA, USA, 3–7 June

    Google Scholar 

  41. Jia S, Jia SS, Sun G, Yao J (2005) The corrosion behaviour of Mg alloy AZ91D/TiCp metal matrix composite. In: Materials science forum, vol 488. Trans Tech Publications, pp 705–708

    Google Scholar 

  42. Karuppusamy P, Lingadurai K, Sivananth V (2019) Influence of Cryogenic Treatment On As-cast AZ91+ 1.5 wt% WC Mg-MMNC wear performance. In: Advances in materials and metallurgy. Springer, Singapore, pp 185–197

    Google Scholar 

  43. Katsarou L, Mounib M, Lefebvre W, Vorozhtsov S, Pavese M, Badini C, Dieringa H (2016) Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring. Mater Sci Eng A 659:84–92

    Article  CAS  Google Scholar 

  44. Khandelwal A, Mani K, Srivastava N, Gupta R, Chaudhari G (2017) Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Compos Part B Eng 123:64–73

    Article  CAS  Google Scholar 

  45. Kubásek J, Vojtech D, Martínek M (2013) Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy. Mater Charact 86:270–282

    Article  CAS  Google Scholar 

  46. Kumar S, Suman KNS, Ravindra K, Poddar P, SB VS (2017) Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method. J Magnes Alloys 5(1):48–55

    Google Scholar 

  47. Labib F, Ghasemi HM, Mahmudi R (2016) Dry tribological behavior of Mg/SiCp composites at room and elevated temperatures. Wear 348:69–79

    Article  CAS  Google Scholar 

  48. Lan J, Yang Y, Li X (2004) Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater Sci Eng A 386:284–290

    Article  Google Scholar 

  49. Li Q, Rottmair CA, Singer RF (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70(16):2242–2247

    Article  CAS  Google Scholar 

  50. Lim CYH, Leo DK, Ang JJS, Gupta M (2005) Wear of magnesium composites reinforced with nano-sized alumina particulates. Wear 259(1–6):620–625

    Article  CAS  Google Scholar 

  51. Liu S, Gao F, Zhang Q, Li W (2009) Mechanical properties and microstrutures of nano-sized sic particles reinforced AZ91D nanocomposites fabricated by high intensity ultrasonic assisted casting. Mater Sci Forum 618–619:449–452

    Article  Google Scholar 

  52. Liu S-Y, Gao F-P, Zhang Q-Y, Xue Z, Li W-Z (2010) Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. Trans Nonferrous Met Soc China 20:1222–1227

    Article  CAS  Google Scholar 

  53. Malaki M, Xu W, Kasar AK, Menezes PL, Dieringa H, Varma RS, Gupta M (2019) Advanced metal matrix nanocomposites. Metals 9(3):330

    Google Scholar 

  54. Meenashisundaram GK, Seetharaman S, Gupta M (2014) Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates. Mater Charact 94:178–188

    Article  CAS  Google Scholar 

  55. Murugan S, Nguyen QB, Gupta M (2019) Synthesis of magnesium based nano-composites. In: Magnesium—The wonder element for engineering/biomedical applications. IntechOpen

    Google Scholar 

  56. Nguyen QB, Gupta M (2008) Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J Alloy Compd 459(1–2):244–250

    Article  CAS  Google Scholar 

  57. Nguyen QB, Sim YHM, Gupta M, Lim CYH (2015) Tribology characteristics of magnesium alloy AZ31B and its composites. Tribol Int 82:464–471

    Article  CAS  Google Scholar 

  58. Nie KB, Deng KK, Wang XJ, Wang T, Wu K (2017) Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging. Mater Charact 124:14–24

    Article  CAS  Google Scholar 

  59. Nie KB, Deng KK, Wang XJ, Wu K (2017) Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting. J Mater Res 32:2609–2620

    Article  CAS  Google Scholar 

  60. Nie KB, Wang XJ, Wu K, Xu L, Zheng MY, Hu XS (2011) Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J Alloys Compd 509:8664–8669

    Article  CAS  Google Scholar 

  61. Nie KB, Wang XJ, Xu L, Wu K, Hu XS, Zheng MY (2012) Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater Des 36:199–205

    Article  CAS  Google Scholar 

  62. Pardo A, Merino S, Merino MC, Barroso I, Mohedano M, Arrabal R, Viejo F (2009) Corrosion behaviour of silicon–carbide-particle reinforced AZ92 magnesium alloy. Corros Sci 51(4):841–849

    Article  CAS  Google Scholar 

  63. Praveenkumar R, Periyasamy P, Mohanavel V, Ravikumar MM (2019) Mechanical and tribological behavior of Mg-matrix composites manufactured by stir casting. Int J Veh Struct Syst (IJVSS) 11(1)

    Google Scholar 

  64. Ramirez A, Ma Q, Davis B, Wilks T, St John DH (2008) Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys. Scripta Mater 59:19–22

    Article  CAS  Google Scholar 

  65. Sankaranarayanan S, Habibi MK, Jayalakshmi S, Jia Ai K, Almajid A, Gupta M (2015) Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties. Mater Sci Technol 31(9):1122–1131

    Article  CAS  Google Scholar 

  66. Shen MJ, Ying WF, Wang XJ, Zhang MF, Wu K (2015) Development of high performance magnesium matrix nanocomposites using nano-SiC particulates as reinforcement. J Mater Eng Perform 24:3798–3807

    Article  CAS  Google Scholar 

  67. Shiying L, Feipeng G, Qiongyuan Z, Wenzhen L (2009) Mechanical properties and microstructures of nano-sized SiC particle reinforced AZ91D nanocomposites fabricated by high intensity ultrasonic assisted casting. Mater Sci Forum 618–619:449–452

    Google Scholar 

  68. Suslick KS, Cline RE, Hammerton DA (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  69. Suslick KS, Matula TJ (1999) Ultrasonic physical mechanisms and chemical effects. In: Webster J (ed) Wiley encyclopedia of electrical and electronics engineering. Wiley, Hoboken, NJ, USA

    Google Scholar 

  70. Tiwari S, Balasubramaniam R, Gupta M (2007) Corrosion behavior of SiC reinforced magnesium composites. Corros Sci 49(2):711–725

    Article  CAS  Google Scholar 

  71. Vogt R, Zhang Z, Li Y, Bonds M, Browning N, Lavernia E, Schoenung J (2009) The absence of thermal expansion mismatch strengthening in nanostructured metal–matrix composites. Scr Mater 61:1052–1055

    Article  CAS  Google Scholar 

  72. Wang X, Liu W, Xiaoshi Hu, Kun Wu (2018) Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling. Mater Sci Eng A 715:49–61

    Article  CAS  Google Scholar 

  73. Zarembo LK (1971) Part III: Acoustic streaming. In: Rozenberg LD (ed) High-intensity ultrasonic fields. Springer, New York, NY, USA

    Google Scholar 

  74. Zhang C, Zhang T, Wang Y, Wei F, Shao Y, Meng G, Wu K (2015) Effect of SiC particulates on the corrosion behavior of extruded AZ91/SiCp composites during the early stage of exposure. J Electrochem Soc 162(14):C754–C766

    Article  CAS  Google Scholar 

  75. Zhang L, Luo X, Liu J, Leng Y, An L (2018) Dry sliding wear behavior of Mg-SiC nanocomposites with high volume fractions of reinforcement. Mater Lett 228:112–115

    Article  CAS  Google Scholar 

  76. Zhou X, Su D, Wu C, Liu L (2012) Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J Nanomater 1–7

    Google Scholar 

  77. Zhu YT, Lowe TC (2000) Observationsand issues on mechanisms of grain refinement during ECAP process. Mater Sci Eng A 291:46–53

    Article  Google Scholar 

  78. Zhu SM, Easton MA, Gibson MA, Dargusch MS, Nie JF (2013) Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy. Mater Sci Eng A 578:377–382

    Article  CAS  Google Scholar 

  79. Zhu SM, Gibson MA, Easton MA, Nie JF (2010) The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys. Scr Mater 63:698–703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P. (2021). Understanding Fabrication and Properties of Magnesium Matrix Nanocomposites. In: Sahoo, S. (eds) Recent Advances in Layered Materials and Structures. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4550-8_9

Download citation

Publish with us

Policies and ethics