Skip to main content

Effects of Environmental EDCs on Oocyte Quality, Embryo Development, and the Outcome in Human IVF Process

  • Chapter
  • First Online:
Environment and Female Reproductive Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1300))

Abstract

In our daily life, people are inevitably exposed to potentially hazardous chemical contaminants. More and more evidences indicate that environmental endocrine-disrupting chemicals (EDCs) negatively affect human reproductive health and are related to many diseases including infertility. Environmental reproductive health focuses on exposure to ubiquitous and persistent EDCs. This chapter mainly discusses the effects of EDCs on the outcome of human in vitro fertilization (IVF), including oocyte quality, fertilization, embryo quality, implantation, and live births. It may be useful for doctors to advise IVF patients to avoid these adverse environmental factors as much as possible. In addition, it is important for clinical embryologists to bear in mind that adverse IVF outcome may result from such undesirable environmental exposure, and quality management and quality control in the IVF laboratory should be strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou Z, et al. Epidemiology of infertility in China: a population-based study. BJOG. 2018;125:432–41. https://doi.org/10.1111/1471-0528.14966.

    Article  CAS  PubMed  Google Scholar 

  2. Jain T, et al. 30 years of data: impact of the United States in vitro fertilization data registry on advancing fertility care. Fertil Steril. 2019;111:477–88. https://doi.org/10.1016/j.fertnstert.2018.11.015.

    Article  PubMed  Google Scholar 

  3. Fénichel P, Rougier C. Environmental factors and female reproduction. Encycl Endocr Dis. 2019;2:525–37. https://doi.org/10.1016/B978-0-12-801238-3.64950-4.

    Article  Google Scholar 

  4. Ma Y, et al. Effects of environmental contaminants on fertility and reproductive health. J Environ Sci. 2019;77:210–7. https://doi.org/10.1016/j.jes.2018.07.015.

    Article  Google Scholar 

  5. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56–70. https://doi.org/10.1016/j.etap.2017.02.024.

    Article  CAS  PubMed  Google Scholar 

  6. Patel S, Zhou C, Rattan S, Flaws JA. Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod. 2015;93:20. https://doi.org/10.1095/biolreprod.115.130336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karwacka A, Zamkowska D, Radwan M, Jurewicz J. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Hum Fertil (Camb). 2019;22:2–25. https://doi.org/10.1080/14647273.2017.1358828.

    Article  CAS  Google Scholar 

  8. Minguez-Alarcon L, Gaskins AJ. Female exposure to endocrine disrupting chemicals and fecundity: a review. Curr Opin Obstet Gynecol. 2017;29:202–11. https://doi.org/10.1097/GCO.0000000000000373.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10. https://doi.org/10.1016/j.clinbiochem.2018.03.012.

    Article  PubMed  Google Scholar 

  10. Kim YR, Pacella RE, Harden FA, White N, Toms L-ML. A systematic review: impact of endocrine disrupting chemicals exposure on fecundity as measured by time to pregnancy. Environ Res. 2019;171:119–33. https://doi.org/10.1016/j.envres.2018.12.065.

    Article  CAS  PubMed  Google Scholar 

  11. Brehm E, Flaws JA. Transgenerational effects of endocrine-disrupting chemicals on male and female reproduction. Endocrinology. 2019;160:1421–35. https://doi.org/10.1210/en.2019-00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xin F, Susiarjo M, Bartolomei MS. Multigenerational and transgenerational effects of endocrine disrupting chemicals: a role for altered epigenetic regulation? Semin Cell Dev Biol. 2015;43:66–75. https://doi.org/10.1016/j.semcdb.2015.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mahalingam S, et al. The effects of in utero bisphenol A exposure on ovarian follicle numbers and steroidogenesis in the F1 and F2 generations of mice. Reprod Toxicol. 2017;74:150–7. https://doi.org/10.1016/j.reprotox.2017.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Younglai EV, Foster WG, Hughes EG, Trim K, Jarrell JF. Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol. 2002;43:121–6. https://doi.org/10.1007/s00244-001-0048-8.

    Article  CAS  PubMed  Google Scholar 

  15. Petro EML, et al. Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence. Hum Reprod. 2012;27:1025–33. https://doi.org/10.1093/humrep/der448.

    Article  CAS  PubMed  Google Scholar 

  16. Varghese AC, Ly KD, Corbin C, Mendiola J, Agarwal A. Oocyte developmental competence and embryo development: impact of lifestyle and environmental risk factors. Reprod Biomed Online. 2011;22:410–20. https://doi.org/10.1016/j.rbmo.2010.11.009.

    Article  PubMed  Google Scholar 

  17. Jurema MW, Nogueira D. In vitro maturation of human oocytes for assisted reproduction. Fertil Steril. 2006;86:1277–91. https://doi.org/10.1016/j.fertnstert.2006.02.126.

    Article  PubMed  Google Scholar 

  18. Younglai EV, Holloway AC, Foster WG. Environmental and occupational factors affecting fertility and IVF success. Hum Reprod Update. 2005;11:43–57. https://doi.org/10.1093/humupd/dmh055.

    Article  PubMed  Google Scholar 

  19. Machtinger R, Orvieto R. Bisphenol a, oocyte maturation, implantation, and IVF outcome: review of animal and human data. Reprod Bio Med. 2014;29:404–10. https://doi.org/10.1016/j.rbmo.2014.06.013.

    Article  CAS  Google Scholar 

  20. Krieg SA, Shahine LK, Lathi RB. Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil Steril. 2016;106:941–7. https://doi.org/10.1016/j.fertnstert.2016.06.043.

    Article  CAS  PubMed  Google Scholar 

  21. Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17:17–33. https://doi.org/10.1093/humupd/dmq032.

    Article  PubMed  Google Scholar 

  22. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77. https://doi.org/10.1093/humupd/dmm040.

    Article  CAS  PubMed  Google Scholar 

  23. Gilchrist RB, Thompson JG. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 2007;67:6–15. https://doi.org/10.1016/j.theriogenology.2006.09.027.

    Article  PubMed  Google Scholar 

  24. Fadini R, et al. Oocyte in vitro maturation in normo-ovulatory women. Fertil Steril. 2013;99:1162–9. https://doi.org/10.1016/j.fertnstert.2013.01.138.

    Article  PubMed  Google Scholar 

  25. Pivonello C, et al. Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol. 2020;18:22. https://doi.org/10.1186/s12958-019-0558-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peretz J, et al. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect. 2014;122:775–86. https://doi.org/10.1289/ehp.1307728.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huo X, et al. Bisphenol-A and female infertility: a possible role of gene-environment interactions. Int J Environ Res Public Health. 2015;12:11101–16. https://doi.org/10.3390/ijerph120911101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujimoto VY, et al. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril. 2011;95:1816–9. https://doi.org/10.1016/j.fertnstert.2010.11.008.

    Article  CAS  PubMed  Google Scholar 

  29. Ehrlich S, et al. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012;27:3583–92. https://doi.org/10.1093/humrep/des328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferris J, Favetta LA, King WA, Bisphenol A. Exposure during oocyte maturation in vitro results in spindle abnormalities and chromosome misalignment in Bos taurus. Cytogenet Genome Res. 2015;145:50–8. https://doi.org/10.1159/000381321.

    Article  CAS  PubMed  Google Scholar 

  31. Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat Res. 2008;651:71–81. https://doi.org/10.1016/j.mrgentox.2007.10.017.

    Article  CAS  PubMed  Google Scholar 

  32. Ferris J, Mahboubi K, MacLusky N, King WA, Favetta LA. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reprod Toxicol. 2016;59:128–38. https://doi.org/10.1016/j.reprotox.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  33. Tomza-Marciniak A, Stępkowska P, Kuba J, Pilarczyk B. Effect of bisphenol A on reproductive processes: a review ofin vitro, in vivoand epidemiological studies. J Appl Toxicol. 2018;38:51–80. https://doi.org/10.1002/jat.3480.

    Article  CAS  PubMed  Google Scholar 

  34. Caserta D, et al. Bisphenol a and the female reproductive tract: an overview of recent laboratory evidence and epidemiological studies. Reprod Biol Endocrinol. 2014;12:37. https://doi.org/10.1186/1477-7827-12-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahalingaiah S, Hauser R, Patterson DG, Woudneh M, Racowsky C. Bisphenol a is not detectable in media or selected contact materials used in IVF. Reprod Biomed Online. 2012;25:608–11. https://doi.org/10.1016/j.rbmo.2012.08.008.

    Article  CAS  PubMed  Google Scholar 

  36. Jain RB. Distributions of selected urinary metabolites of volatile organic compounds by age, gender, race/ethnicity, and smoking status in a representative sample of U.S. adults. Environ Toxicol Pharmacol. 2015;40:471–9. https://doi.org/10.1016/j.etap.2015.07.018.

    Article  CAS  PubMed  Google Scholar 

  37. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14. https://doi.org/10.3389/fpubh.2020.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Catino A, et al. Breath analysis: a systematic review of volatile organic compounds (VOCs) in diagnostic and therapeutic management of pleural mesothelioma. Cancers (Basel). 2019;11:831. https://doi.org/10.3390/cancers11060831.

    Article  CAS  Google Scholar 

  39. Toreyin ZN, Ghosh M, Goksel O, Goksel T, Godderis L. Exhaled breath analysis in diagnosis of malignant pleural mesothelioma: systematic review. Int J Environ Res Public Health. 2020;17:1110. https://doi.org/10.3390/ijerph17031110.

    Article  CAS  PubMed Central  Google Scholar 

  40. Esteves SC, Bento FC. Implementation of cleanroom technology in reproductive laboratories: the question is not why but how. Reprod Biomed Online. 2016;32:9–11. https://doi.org/10.1016/j.rbmo.2015.09.014.

    Article  PubMed  Google Scholar 

  41. Khoudja RY, Xu Y, Li T, Zhou C. Better IVF outcomes following improvements in laboratory air quality. J Assist Reprod Genet. 2012;30:69–76. https://doi.org/10.1007/s10815-012-9900-1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Poletto K, de Lima Y, Approbato M. Effect of the air filtration system replacement on embryo quality in the assisted reproduction laboratory. Revista Brasileira de Ginecologia e Obstetrícia/RBGO Gynecol Obstetr. 2018;40:625–30. https://doi.org/10.1055/s-0038-1670715.

    Article  Google Scholar 

  43. Mortimer D, et al. Cairo consensus on the IVF laboratory environment and air quality: report of an expert meeting. Reprod Biomed Online. 2018;36:658–74. https://doi.org/10.1016/j.rbmo.2018.02.005.

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal N, et al. Volatile organic compounds and good laboratory practices in the in vitro fertilization laboratory: the important parameters for successful outcome in extended culture. J Assist Reprod Genet. 2017;34:999–1006. https://doi.org/10.1007/s10815-017-0947-x.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mahalingaiah S. Is there a common mechanism underlying air pollution exposures and reproductive outcomes noted in epidemiologic and in vitro fertilization lab-based studies? Fertil Steril. 2018;109:68. https://doi.org/10.1016/j.fertnstert.2017.10.034.

    Article  PubMed  Google Scholar 

  46. Clark KL, Ganesan S, Keating AF. Impact of toxicant exposures on ovarian gap junctions. Reprod Toxicol. 2018;81:140–6. https://doi.org/10.1016/j.reprotox.2018.07.087.

    Article  CAS  PubMed  Google Scholar 

  47. Rubes J, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod. 2005;20:2776–83. https://doi.org/10.1093/humrep/dei122.

    Article  CAS  PubMed  Google Scholar 

  48. Dann AB, Hontela A. Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol. 2011;31:285–311. https://doi.org/10.1002/jat.1660.

    Article  CAS  PubMed  Google Scholar 

  49. Gore AC, et al. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:E150. https://doi.org/10.1210/er.2015-1010.

    Article  Google Scholar 

  50. Jurewicz J, et al. Triclosan exposure and ovarian reserve. Reprod Toxicol. 2019;89:168–72. https://doi.org/10.1016/j.reprotox.2019.07.086.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang A, et al. Potential genetic damage to nematode offspring following exposure to triclosan during pregnancy. Mol Med Rep. 2017;16:1321–7. https://doi.org/10.3892/mmr.2017.6761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lange A, et al. Triclosan exposure and treatment outcomes in women undergoing in vitro fertilization. Fertil Steril. 2015;104:3. https://doi.org/10.1016/j.fertnstert.2015.07.264.

    Article  Google Scholar 

  53. Arya S, Dwivedi AK, Alvarado L, Kupesic-Plavsic S. Exposure of U.S. population to endocrine disruptive chemicals (parabens, Benzophenone-3, Bisphenol-A and triclosan) and their associations with female infertility. Environ Pollut. 2020;265:114763. https://doi.org/10.1016/j.envpol.2020.114763.

    Article  CAS  PubMed  Google Scholar 

  54. Yuan M, et al. Preimplantation exposure to Bisphenol A and Triclosan may lead to implantation failure in humans. Biomed Res Int. 2015;2015:1–9. https://doi.org/10.1155/2015/184845.

    Article  CAS  Google Scholar 

  55. Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39. https://doi.org/10.1016/j.envint.2015.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lyche JL, et al. Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health. 2009;12:225–49. https://doi.org/10.1080/10937400903094091.

    Article  CAS  Google Scholar 

  57. Chin HB, et al. Association of urinary concentrations of phthalate metabolites and bisphenol A with early pregnancy endpoints. Environ Res. 2019;168:254–60. https://doi.org/10.1016/j.envres.2018.09.037.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu YD, et al. Prenatal phthalate exposure and placental size and shape at birth: a birth cohort study. Environ Res. 2018;160:239–46. https://doi.org/10.1016/j.envres.2017.09.012.

    Article  CAS  PubMed  Google Scholar 

  59. Hauser R, et al. Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the EARTH study. Environ Health Perspect. 2016;124:831–9. https://doi.org/10.1289/ehp.1509760.

    Article  CAS  PubMed  Google Scholar 

  60. Machtinger R, et al. Urinary concentrations of biomarkers of phthalates and phthalate alternatives and IVF outcomes. Environ Int. 2018;111:23–31. https://doi.org/10.1016/j.envint.2017.11.011.

    Article  CAS  PubMed  Google Scholar 

  61. Kalo D, Roth Z. Low level of mono(2-ethylhexyl) phthalate reduces oocyte developmental competence in association with impaired gene expression. Toxicology. 2017;377:38–48. https://doi.org/10.1016/j.tox.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  62. Kalo D, et al. Mono(2-ethylhexyl) phthalate (MEHP) induces transcriptomic alterations in oocytes and their derived blastocysts. Toxicology. 2019;421:59–73. https://doi.org/10.1016/j.tox.2019.04.016.

    Article  CAS  PubMed  Google Scholar 

  63. Wang W, Craig ZR, Basavarajappa MS, Hafner KS, Flaws JA. Mono-(2-ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse ovarian antral follicles. Biol Reprod. 2012;87:152. https://doi.org/10.1095/biolreprod.112.102467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Haman C, Dauchy X, Rosin C, Munoz JF. Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res. 2015;68:1–11. https://doi.org/10.1016/j.watres.2014.09.030.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao X, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicol Environ Saf. 2019;180:43–52. https://doi.org/10.1016/j.ecoenv.2019.04.083.

    Article  CAS  PubMed  Google Scholar 

  66. Wang L, Kannan K. Alkyl protocatechuates as novel urinary biomarkers of exposure to p-hydroxybenzoic acid esters (parabens). Environ Int. 2013;59:27–32. https://doi.org/10.1016/j.envint.2013.05.001.

    Article  CAS  PubMed  Google Scholar 

  67. Cabaleiro N, de la Calle I, Bendicho C, Lavilla I. An overview of sample preparation for the determination of parabens in cosmetics. TrAC Trends Anal Chem. 2014;57:34–46. https://doi.org/10.1016/j.trac.2014.02.003.

    Article  CAS  Google Scholar 

  68. Smith KW, et al. Urinary paraben concentrations and ovarian aging among women from a fertility center. Environ Health Perspect. 2013;121:1299–305. https://doi.org/10.1289/ehp.1205350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Den Hond E, et al. Human exposure to endocrine disrupting chemicals and fertility: a case-control study in male subfertility patients. Environ Int. 2015;84:154–60. https://doi.org/10.1016/j.envint.2015.07.017.

    Article  CAS  Google Scholar 

  70. Minguez-Alarcon L, et al. Urinary concentrations of bisphenol A, parabens and phthalate metabolite mixtures in relation to reproductive success among women undergoing in vitro fertilization. Environ Int. 2019;126:355–62. https://doi.org/10.1016/j.envint.2019.02.025.

    Article  CAS  PubMed  Google Scholar 

  71. Nowak K, Ratajczak-Wrona W, Gorska M, Jablonska E. Parabens and their effects on the endocrine system. Mol Cell Endocrinol. 2018;474:238–51. https://doi.org/10.1016/j.mce.2018.03.014.

    Article  CAS  PubMed  Google Scholar 

  72. Sabatini ME, et al. Urinary paraben concentrations and in vitro fertilization (IVF) outcomes. Fertil Steril. 2011;96:s154. https://doi.org/10.1016/j.fertnstert.2011.07.606.

  73. Minguez-Alarcon L, et al. Urinary paraben concentrations and in vitro fertilization outcomes among women from a fertility clinic. Fertil Steril. 2016;105:714–21. https://doi.org/10.1016/j.fertnstert.2015.11.021.

    Article  CAS  PubMed  Google Scholar 

  74. Crawford NM, et al. Effects of perfluorinated chemicals on thyroid function, markers of ovarian reserve, and natural fertility. Reprod Toxicol. 2017;69:53–9. https://doi.org/10.1016/j.reprotox.2017.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raymer JH, et al. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and their associations with human semen quality measurements. Reprod Toxicol. 2012;33:419–27. https://doi.org/10.1016/j.reprotox.2011.05.024.

    Article  CAS  PubMed  Google Scholar 

  76. McCoy JA, et al. Associations between perfluorinated alkyl acids in blood and ovarian follicular fluid and ovarian function in women undergoing assisted reproductive treatment. Sci Total Environ. 2017;605:9–17. https://doi.org/10.1016/j.scitotenv.2017.06.137.

    Article  CAS  PubMed  Google Scholar 

  77. López-Arellano M, et al. Effect of perfluorooctanoic acid in the generation of stress oxidative and cell death induction in mouse early oogenesis in vitro. Toxicol Lett. 2016;259:S231. https://doi.org/10.1016/j.toxlet.2016.07.555.

  78. Hughes PM, et al. Peroxides in mineral oil used for in vitro fertilization: defining limits of standard quality control assays. J Assist Reprod Genet. 2010;27:87–92. https://doi.org/10.1007/s10815-009-9383-x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dominguez A, et al. Effect of perfluorooctane sulfonate on viability, maturation and gap junctional intercellular communication of porcine oocytes in vitro. Toxicol In Vitro. 2016;35:93–9. https://doi.org/10.1016/j.tiv.2016.05.011.

    Article  CAS  PubMed  Google Scholar 

  80. Dominguez A, et al. Effect of perfluorodecanoic acid on pig oocyte viability, intracellular calcium levels and gap junction intercellular communication during oocyte maturation in vitro. Toxicol In Vitro. 2019;58:224–9. https://doi.org/10.1016/j.tiv.2019.03.041.

    Article  CAS  PubMed  Google Scholar 

  81. Governini L, et al. The impact of environmental exposure to perfluorinated compounds on oocyte fertilization capacity. J Assist Reprod Genet. 2011;28:415–8. https://doi.org/10.1007/s10815-011-9548-2.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kang Q, et al. Nontargeted identification of per- and polyfluoroalkyl substances in human follicular fluid and their blood-follicle transfer. Environ Int. 2020;139:105686. https://doi.org/10.1016/j.envint.2020.105686.

    Article  CAS  PubMed  Google Scholar 

  83. Toft G. Organochlorines and the effect on female reproductive system. Encycl Environ Health. 2015;4:778–84. https://doi.org/10.1016/B978-0-12-409548-9.09543-9.

    Article  Google Scholar 

  84. Zhu Y, Huang B, Li QX, Wang J. Organochlorine pesticides in follicular fluid of women undergoing assisted reproductive technologies from central China. Environ Pollut. 2015;207:266–72. https://doi.org/10.1016/j.envpol.2015.09.030.

    Article  CAS  PubMed  Google Scholar 

  85. Pocar P, Brevini TA, Antonini S, Gandolfi F. Cellular and molecular mechanisms mediating the effect of polychlorinated biphenyls on oocyte in vitro maturation. Reprod Toxicol. 2006;22:242–9. https://doi.org/10.1016/j.reprotox.2006.04.023.

    Article  CAS  PubMed  Google Scholar 

  86. Pan W, et al. Selected persistent organic pollutants associated with the risk of primary ovarian insufficiency in women. Environ Int. 2019;129:51–8. https://doi.org/10.1016/j.envint.2019.05.023.

    Article  CAS  PubMed  Google Scholar 

  87. Campagna C, Ayotte P, Sirard MA, Bailey JL. An environmentally relevant mixture of organochlorines, their metabolites and effects on preimplantation development of porcine embryos. Reprod Toxicol. 2008;25:361–6.

    Article  CAS  Google Scholar 

  88. Campagna C, et al. Effect of an environmentally relevant metabolized organochlorine mixture on porcine cumulus-oocyte complexes. Reprod Toxicol. 2007;23:145–52.

    Article  CAS  Google Scholar 

  89. Go KJ. ‘By the work, one knows the workman’: the practice and profession of the embryologist and its translation to quality in the embryology laboratory. Reprod Biomed Online. 2015;31:449–58. https://doi.org/10.1016/j.rbmo.2015.07.006.

    Article  PubMed  Google Scholar 

  90. Ehrlich S, et al. Urinary Bisphenol A concentrations and implantation failure among women undergoingin vitro fertilization. Environ Health Perspect. 2012;120:978–83. https://doi.org/10.1289/ehp.1104307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bloom MS, et al. Serum unconjugated bisphenol A concentrations in men may influence embryo quality indicators during in vitro fertilization. Environ Toxicol Pharmacol. 2011;32:319–23. https://doi.org/10.1016/j.etap.2011.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vigezzi L, et al. A deregulated expression of estrogen-target genes is associated with an altered response to estradiol in aged rats perinatally exposed to bisphenol A. Mol Cell Endocrinol. 2016;426:33–42. https://doi.org/10.1016/j.mce.2016.02.010.

    Article  CAS  PubMed  Google Scholar 

  93. Vigezzi L, et al. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment. Reprod Toxicol. 2015;52:83–92. https://doi.org/10.1016/j.reprotox.2015.01.011.

    Article  CAS  PubMed  Google Scholar 

  94. Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007–2016). Fertil Steril. 2016;106:827–56. https://doi.org/10.1016/j.fertnstert.2016.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Morbeck DE. Air quality in the assisted reproduction laboratory: a mini-review. J Assist Reprod Genet. 2015;32:1019–24. https://doi.org/10.1007/s10815-015-0535-x.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Franklin P, Tan M, Hemy N, Hall GL. Maternal exposure to indoor air pollution and birth outcomes. Int J Environ Res Public Health. 2019;16:1364. https://doi.org/10.3390/ijerph16081364.

    Article  CAS  PubMed Central  Google Scholar 

  97. Xue T, Zhang Q. Associating ambient exposure to fine particles and human fertility rates in China. Environ Pollut. 2018;235:497–504. https://doi.org/10.1016/j.envpol.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  98. Shah PS, Balkhair T. Air pollution and birth outcomes: a systematic review. Environ Int. 2011;37:498–516. https://doi.org/10.1016/j.envint.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  99. Caron-Beaudoin É, et al. Gestational exposure to volatile organic compounds (VOCs) in Northeastern British Columbia, Canada: a pilot study. Environ Int. 2018;110:131–8. https://doi.org/10.1016/j.envint.2017.10.022.

    Article  CAS  PubMed  Google Scholar 

  100. Heitmann RJ, et al. Live births achieved via IVF are increased by improvements in air quality and laboratory environment. Reprod Biomed Online. 2015;31:364–71. https://doi.org/10.1016/j.rbmo.2015.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Johnson PI, et al. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ Int. 2016;93:716–28. https://doi.org/10.1016/j.envint.2016.03.009.

    Article  CAS  Google Scholar 

  102. Hua R, et al. Urinary triclosan concentrations and early outcomes of in vitro fertilization-embryo transfer. Reproduction. 2017;153:319–25. https://doi.org/10.1530/REP-16-0501.

    Article  CAS  PubMed  Google Scholar 

  103. Crawford BR, Decatanzaro D. Disruption of blastocyst implantation by triclosan in mice: impacts of repeated and acute doses and combination with bisphenol-a. Reprod Toxicol. 2012;34:607–13. https://doi.org/10.1016/j.reprotox.2012.09.008.

    Article  CAS  PubMed  Google Scholar 

  104. Wang CF, Tian Y. Reproductive endocrine-disrupting effects of triclosan: population exposure, present evidence and potential mechanisms. Environ Pollut. 2015;206:195–201. https://doi.org/10.1016/j.envpol.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  105. Iwasaki Y, et al. Quantitative analysis of perfluorinated chemicals in media for in vitro fertilization and related samples. Chemosphere. 2012;88:445–9. https://doi.org/10.1016/j.chemosphere.2012.02.068.

    Article  CAS  PubMed  Google Scholar 

  106. Kadhel P, Monnier P, Boucoiran I, Chaillet N, Fraser WD. Organochlorine pollutants and female fertility: a systematic review focusing on in vitro fertilization studies. Reprod Sci. 2012;19:1246–59. https://doi.org/10.1177/1933719112446077.

    Article  CAS  PubMed  Google Scholar 

  107. Toft G, Thulstrup AM. Organochlorines and the effect on female reproductive system. Encycl Environ Health. 2011;1:275–82. https://doi.org/10.1016/B978-0-444-52272-6.00605-X.

    Article  Google Scholar 

  108. Johnson PI, et al. Serum and follicular fluid concentrations of polybrominated diphenyl ethers and in-vitro fertilization outcome. Environ Int. 2012;45:9–14. https://doi.org/10.1016/j.envint.2012.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Toft G. Persistent organochlorine pollutants and human reproductive health. Dan Med J. 2014;61:B4967.

    PubMed  Google Scholar 

  110. Meeker JD, et al. Serum concentrations of polychlorinated biphenyls in relation toin vitro fertilization outcomes. Environ Health Perspect. 2011;119:1010–6. https://doi.org/10.1289/ehp.1002922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jirsova S, Masata J, Jech L, Zvarova J. Effect of polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2,-bis (4-chlorophenyl)-ethane (DDT) in follicular fluid on the results of in vitro fertilization-embryo transfer (IVF-ET) programs. Fertil Steril. 2010;93:1831–6. https://doi.org/10.1016/j.fertnstert.2008.12.063.

    Article  CAS  PubMed  Google Scholar 

  112. Khanjani N, Sim MR. Maternal contamination with PCBs and reproductive outcomes in an Australian population. J Expo Sci Environ Epidemiol. 2006;17:191–5. https://doi.org/10.1038/sj.jes.7500495.

    Article  CAS  PubMed  Google Scholar 

  113. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22:2–22. https://doi.org/10.1093/humupd/dmv034.

    Article  CAS  PubMed  Google Scholar 

  114. Ritz B, Wilhelm M. Ambient air pollution and adverse birth outcomes: Methodologic issues in an emerging field. Basic Clin Pharmacol Toxicol. 2008;102:182–90. https://doi.org/10.1111/j.1742-7843.2007.00161.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dadvand P, Rankin J, Rushton S, Pless-Mulloli T. Association between maternal exposure to ambient air pollution and congenital heart disease: a register-based spatiotemporal analysis. Am J Epidemiol. 2011;173:171–82. https://doi.org/10.1093/aje/kwq342.

    Article  PubMed  Google Scholar 

  116. William RB, et al. Control of air quality in an assisted reproductive technology laboratory. Fertil Steril. 1999;71:150–4. https://doi.org/10.1016/S0015-0282(98)00395-1.

    Article  Google Scholar 

  117. Dickey RP, Wortham JWE, Potts A, Welch A. Effect of IVF laboratory air quality on pregnancy success. Fertil Steril. 2010;94:2. https://doi.org/10.1016/j.fertnstert.2010.07.605.

    Article  Google Scholar 

  118. Hodgson AT, Destaillats H, Sullivan DP, Fisk WJ. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air. 2007;17:305–16. https://doi.org/10.1111/j.1600-0668.2007.00479.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, X., Yang, M. (2021). Effects of Environmental EDCs on Oocyte Quality, Embryo Development, and the Outcome in Human IVF Process. In: Zhang, H., Yan, J. (eds) Environment and Female Reproductive Health. Advances in Experimental Medicine and Biology, vol 1300. Springer, Singapore. https://doi.org/10.1007/978-981-33-4187-6_9

Download citation

Publish with us

Policies and ethics