Skip to main content

Phycoremediation of Pollutants for Ecosystem Restitution

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 9))

Abstract

Due to rapid industrialization and urbanization, huge amount of production as well as accumulation of toxic and organic contaminants can lead to serious environmental problems. Unwanted buildup of untreated effluents and their discharge into water bodies negatively affects the stability and wholesomeness of natural aquatic ecosystems and may also become a reason for causing adversarial health effects to humans and the environment. To overcome this problem, many conventional approaches are in use, such as physical, chemical, reverse osmosis, electro-dialysis, ultrafiltration process, ion exchange, and precipitation using chemicals, but these methods have their own limitations. To overcome these limitations, researchers diverted their attention towards biological means, that is, application of bacterial, fungal genera, plants and algae to eradicate, biodegrade, or render unhazardous inorganic and organic pollutants in water bodies. The purpose of using algae in wastewater treatment is that algae uses the waste as carbon source and energy, generating oxygen, and some species also accumulate lipids in their cell wall. These lipid molecules are then removed from the algal cell and are used as biofuel. Nowadays, several algal genera play a significant function in biomonitoring and controlling the organic contaminants in aquatic environment. Since long, all over the globe, people have employed and studied in detail the role of bacteria alone or in association with plants in pollution regulation. On the other hand, the relevance and function of varied algal genera in controlling and restoration of organic and inorganic contaminated aquatic ecosystem are also in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarti N, Sumathi P, Subrahmanian V (2008) Phycoremediation to improve algal water quality. Indian Hydrobiol 11:173–184

    Google Scholar 

  • Abbas HS, Ismail MI, Mostafa MT, Sulaymon HA (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Abdel-Raouf N, Al- Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Ahmad F, Khan AU, Yasar A (2013) Comparative phycoremediation of sewage water by various species of algae. Proc Pak Acad Sci 50:131–139

    CAS  Google Scholar 

  • Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94

    Article  CAS  Google Scholar 

  • Aksu Z, Dönmez G (2006) Binary biosorption of cadmium (II) and nickel (II) on to dried Chlorella vulgaris: co-ion effect on monocomponent isotherm parameters. Process Biochem 41:860–868

    Article  CAS  Google Scholar 

  • Al- Turki AI (2009) Microbial polycyclic aromatic hydrocarbons degradation in soil. Res J Environ Toxicol 3:1–8

    Article  CAS  Google Scholar 

  • Altamirano M, García-Villada L, Agrelo M, Sánchez-Martín L, Martín-Otero L, Flores-Moya A, Rico M, López-Rodas V, Costas E (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosens Bioelectron 19:1319–1323

    Article  CAS  Google Scholar 

  • Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean: Soil, Air, Water 36:937–962

    CAS  Google Scholar 

  • Arora NK (2018) Bioremediation: a green approach for restoration of polluted ecosystems. Environ Sustain 1(4):305–307

    Article  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–340

    Article  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation – bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156

    Article  CAS  Google Scholar 

  • Azab YA (2002) The use of immobilized algae and algal biofilters for the treatment of industrial heavy metals pollution proceedings, plant and industrial pollution. Egypt Bot Soc, Cairo, 135–148

    Google Scholar 

  • Azarpira H, Behdarvand P, Dhumal K, Pondhe G (2014) Comparative studies on phycoremediation of sewage water by using blue green algae. Int J Biosci 4:58–64

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Becker EW (1994) Microalgae-biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Berglund O, Larsson P, Ewald G, Okla L (2001) The effect of lake trophy on lipid content and PCB concentrations in planktonic food webs. Ecology 82:1078–1088

    Article  Google Scholar 

  • Bitton G (1990) Wastewater microbiology. Wiley, New York

    Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40(6):1999–2013

    Article  CAS  Google Scholar 

  • Brinza L, Dring MJ, Gavrilescu M (2007) Marine micro and macro algal species as biosorbents for heavy metals. Environ Eng Manag J 6(3):237–251

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Brusseau ML (1998) The impact of physical, chemical and biological factors on biodegradation. In: Serra R (ed) Proceedings of the International Conference on biotechnology for soil remediation: scientific bases and practical applications. C.I.P.A. S.R.L., Milan, pp 81–98

    Google Scholar 

  • Burritt DJ (2008) The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ 31:1416–1431

    Article  CAS  Google Scholar 

  • Campos VM, Merino I, Casado R, Pacios LF, Gómez L (2008) Review. Phytoremediation of organic pollutants. Span J Agric Res 6:38–47

    Article  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Chaisuksant Y (2003) Biosorption of cadmium (II) and copper (II) by pretreated biomass of marine alga Gracilaria fisheri. Environ Technol 24:1501–1508

    Article  CAS  Google Scholar 

  • Chaney R, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chekroun KB, Sánchez E, Baghour M (2018) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1(2):19–32

    Google Scholar 

  • Choi H-J, Lee S-M (2012) Effects of microalgae on the removal of nutrients from wastewater: various concentrations of Chlorella vulgaris. Environ Eng Res 17(1):3–8

    Article  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2004) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73:147–153

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  Google Scholar 

  • Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141–152

    Article  CAS  Google Scholar 

  • Colak O, Kaya Z (1988) A study on the possibilities of biological wastewater treatment using algae. Doga Biyoloji Serisi 12:18–29

    Google Scholar 

  • Stockholm Convention (2011) Persistent organic pollutants. Available from: http://chm.pops.int/Convention/ThePOPs/tabid/673/default.aspx

  • Cruz-Uribe O, Rorrer GL (2006) Uptake and transformation of 2,4,6-trinitrotolune (TNT) from seawater by microplantlet suspension cultures of the marine red macroalga Portieria hornemannii. Biotechnol Bioeng 93:401–412

    Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell. Dev Biol 29:207–212

    Google Scholar 

  • Dai S, Vaillancourt FH, Maaroufi H, Drouin NM, Neau DB, Snieckus V, Bolin JT, Eltis LD (2002) Identification and analysis of a bottleneck in PCB biodegradation. Nat Struct Biol 9:934–939

    Article  CAS  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • Dhankher OP, Pilon- Smits EAH, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In: Atman A, Hasegawa PM (eds) Plant biotechnology and agriculture, prospects for the 21st century. Academic Press, New York, pp 309–328

    Chapter  Google Scholar 

  • Duran-Nah J, Colli-Quintal J (2000) Acute pesticide poisoning. Mex Public Health 42:53–55

    CAS  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3:195–199

    Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  CAS  Google Scholar 

  • El-Sheekh MM, El-Shouny WA, Osman MEH, El-Gammal EWE (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19:357–365

    Article  CAS  Google Scholar 

  • Esteve- Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  Google Scholar 

  • Ferreira LS, Rodrigues MS, Carlos MDCJ, Alessandra L, Elisabetta F, Patrizia P, Attilio C (2011) Adsorption of Ni2+, Zn2+ and Pb2+ on to dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333

    Article  CAS  Google Scholar 

  • Fitzgerald SA, Steuer JJ (2006) Association of polychlorinated biphenyls (PCBs) with live algae and total lipids in rivers- a field- based approach. Sci Total Environ 354(1):60–74

    Article  CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC (2008) Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C- glucosyltransferases. Plant J 56:963–974

    Article  CAS  Google Scholar 

  • Gattullo CE, Bährs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Article  CAS  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110

    Article  Google Scholar 

  • Godlewska- Z, yÅ‚kiewicz B (2001) Analytical applications of living organisms for preconcentration of trace metals and their speciation. Crit Rev Anal Chem 31(3):175–189

    Article  Google Scholar 

  • Green A, Moore D, Farrar D (1999) Chronic toxicity of 2,4,6-trinitrotoluene to a marine polychaete and an estuarine amphipod. Environ Toxicol Chem 18:1783–1790

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152(1):407–414

    Article  CAS  Google Scholar 

  • Harding LW, Phillips JH (1978) Polychlorinated biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49:103–111

    Article  CAS  Google Scholar 

  • Hong Y, Dong-Xing Y, Lin Q, Lang T (2008) Accumulation and biodegradation of phenentherene and fluranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1983) In: IARC (ed) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: polynuclear aromatic compounds Part I. IARC Press, Lyon

    Google Scholar 

  • Ibuot A, Dean AP, McIntosh OA, Pittman JK (2017) Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res 24:89–96

    Article  Google Scholar 

  • Jain PK, Bajpai V (2012) Biotechnology of bioremediation- a review. Int J Environ Sci 3:535–549

    CAS  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284

    Article  CAS  Google Scholar 

  • Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, Oxford

    Google Scholar 

  • Khan MA, Rao RAK, Ajmal M (2008) Heavy metal pollution and its control through non-conventional adsorbents (1998–2007): a review. J Int Environ Appl Sci 3(2):101–141

    Google Scholar 

  • Kloeppel H, Koerdel W, Stein B (1997) Herbicide transport by surface runoff and herbicide retention in a filter strip rainfall and runoff simulation studies. Chemosphere 35:129–141

    Article  Google Scholar 

  • Kshirsagar AD (2013) Bioremediation of wastewater by using microalgae: an experimental study. Int J Life Sci Bt Pharm 2:140–146

    Google Scholar 

  • Kshirsagar AD (2014) Remediation of domestic wastewater by using algal and fungal mixed culture: an experimental study. Int Interdiscip Res J 4:166–173

    Google Scholar 

  • Kumar JIN, Oommen C (2012) Removal of heavy metals by biosorption using fresh water alga Spirogyra hyaline. J Environ Biol 33:27–31

    CAS  Google Scholar 

  • Kumar M, Bhadrecha P, Pirzadah TB, Malik B, Verma A, Kumar V, Prasad R, Pachouri UC, Rehman RU (2015) Power reservoirs of jumble-based biomass in Asia. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, Cham, pp 455–470

    Google Scholar 

  • Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo-Mar Lett 23:140–146

    Article  CAS  Google Scholar 

  • Lamaia C, Kruatrachuea M, Pokethitiyooka P, Upathamb ES, Soonthornsarathoola V (2005) Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) Kutzing: a laboratory study. Sci Asia 31:121–127

    Article  Google Scholar 

  • Lara RJ, Wiencke C, Ernst W (1989) Association between exudates of Brown algae and polychlorinated biphenyls. J Appl Phycol 1:267–270

    Article  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment: a review. Environ Forensic 6:109–131

    Article  CAS  Google Scholar 

  • Loganathan BG, Kannan K (1991) Time perspectives of organochlorine contamination in the global environment. Mar Pollut Bull 22:582–584

    Article  CAS  Google Scholar 

  • Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2,2′,6,6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83:24–32

    Article  CAS  Google Scholar 

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419

    Article  CAS  Google Scholar 

  • Maltseva OV, Tsoi TV, Quensen JF 3rd, Fukuda M, Tiedje JM (1999) Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria. Biodegradation 10:363–371

    Article  CAS  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living algae spirogyra sp. and spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  Google Scholar 

  • Martínez-Jerónimo F, Cruz-Cisneros JL, García-Hernández L (2008) A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments. Ecotoxicol Environ Saf 71:26–31

    Article  CAS  Google Scholar 

  • McIntyre T, Lewis GM (1997) The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites in Canada. J Soil Contam 6:227–241

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Article  CAS  Google Scholar 

  • Miranda J, Krishnakumar G, D’Silva A (2012) Removal of Pb2+ from aqueous system by live Oscillatoria laete-virens (Crouan and Crouan) Gomont isolated from industrial effluents. World J Microbiol Biotechnol 28:3053–3065

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2011) Capacity of simultaneous removal of zinc and cadmium from contaminated media by two microalgae isolated from a polluted site. Environ Chem Lett 9(4):511–517

    Article  CAS  Google Scholar 

  • Moore MT, Cooper CM, Smith JS, Cullum RF, Knight SS, Locke MA, Bennett ER (2007) Diazinon mitigation in constructed wetlands: influence of vegetation. Water Air Soil Pollut 184:313–321

    Article  CAS  Google Scholar 

  • Moro CV, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31:778–786

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal- bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267

    Article  CAS  Google Scholar 

  • Nakajima N, Teramoto T, Kasai F, Sano T, Tamaoki M, Aono M, Kubo A, Kamada H, Azumi Y, Saji H (2007) Glycosylation of bisphenol A by freshwater microalgae. Chemosphere 69:934–941

    Article  CAS  Google Scholar 

  • Nanda S, Sarangi PK, Abraham J (2010) Cynobacterial remediation of industrial effluents II. Paper mill effluents. N Y Sci J 3:37–41

    Google Scholar 

  • Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke TK, Eisentraeger A (2007) Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ Toxicol Chem 26:1090–1099

    Article  CAS  Google Scholar 

  • Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K, Saepoff S (2001) Development of marine toxicity data for ordinance compounds. Arch Environ Contam Toxicol 41:308–318

    Article  CAS  Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123

    Article  CAS  Google Scholar 

  • Orji FA, Ibiene AA, Dike EN (2012a) Laboratory scale bioremediation of petroleum hydrocarbon – polluted mangrove swamps in the Niger Delta using cow dung. Malays J Microbiol 8:219–228

    CAS  Google Scholar 

  • Orji FA, Ibiene AA, Ugbogu OC (2012b) Petroleum hydrocarbon pollution of mangrove swamps: the promises of remediation by enhanced natural attenuation. Am J Agric Biol Sci 7(2):207–216

    Article  Google Scholar 

  • Pavlostathis SG, Prytula MT, Yeh DH (2001) Potential and limitation of microbial reductive dechlorination for bioremediation application. Proceeding of the First European Bioremediation Conference, Chania, Greece, pp 101–104

    Google Scholar 

  • Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    Article  CAS  Google Scholar 

  • Pérez-Rama M, Alonso JA, López CH, Vaamonde ET (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84(3):265–270

    Article  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Ramíreza ME, Véleza YH, Rendóna L, Alzatea E (2018) Potential of microalgae in the bioremediation of water with chloride content. Braz J Biol 78(3):472–476

    Article  Google Scholar 

  • Ro KS, Venugopal A, Adrian DD, Constant D, Qaisi K, Valsaraj KT, Thibodeaux LJ, Roy D (1996) Solubility of 2,4,6-trinitrotoluene (TNT) in water. J Chem Eng Data 41:758–761

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26(4):223–235

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353

    Article  CAS  Google Scholar 

  • Rosenberg E, Legmann R, Kushmaro A, Taube R, Adler E, Ron EZ (1992) Petroleum bioremediation-a multiphase problem. Biodegradation 3:337–350

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • San Ju- K, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Am Soc Microbiol 74(2):250–272

    Google Scholar 

  • Sbihi K, Cherifi O, El Gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the fresh water diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study. J Mater Environ Sci 3(3):497–506

    CAS  Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption by marine algae. In: Valdes J (ed) Bioremediation. Springer, Dordrecht, pp 139–169

    Chapter  Google Scholar 

  • Sengar RMS, Singh KK, Singh S (2011) Application of phycoremediation technology in the treatment of sewage water to reduce pollution load. Ind J Sci Res 2:33–39

    CAS  Google Scholar 

  • Sharma GK, Khan SA (2013) Bioremediation of sewage wastewater using selective algae for manure production. Int J Environ Eng Manag 4:573–580

    Google Scholar 

  • Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common fresh water filamentous algae. World J Microbiol Biotechnol 23:1115–1120

    Article  CAS  Google Scholar 

  • Snellinx Z, Nepovím A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res Int 9:48–61

    Article  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  CAS  Google Scholar 

  • Subramanian M, Shanks JV (2003) Role of plants in the transformation of explosives. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 389–408

    Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – A novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Tahir F, Azeem M, Fahad R, Asad UK, Naim R, Wasif F, Saif Ur RM, Jian X (2018) Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sust Energ Rev 82(P3):3107–3126

    Google Scholar 

  • Tiantian Z, Lihua C, Xinhua X, Lin Z, Huanlin C (2011) Advances on heavy metal removal from aqueous solution by algae. Prog Chem 23(8):1782–1794

    Google Scholar 

  • Tien CJ, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and fresh water phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17:379–389

    Article  CAS  Google Scholar 

  • Tüzün Ä°, BayramoÄŸlu G, Yalçın E, BaÅŸaran G, Çelik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg (II), Cd(II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  CAS  Google Scholar 

  • Venosa AD, Haines JR, Allen DM (1992) Efficacy of commercial inocula in enhancing biodegradation of weathered crude oil contaminating a Prince William Sound beach. J Ind Microbiol 10:1–11

    Article  CAS  Google Scholar 

  • Voldner EC, Li Y (1995) Global usage of selected persistent organochlorines. Sci Total Environ 160(161):201–210

    Article  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029

    Article  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182A–186A

    Article  CAS  Google Scholar 

  • Wolfe NL, Hoehamer CF (2003) Enzymes used by plants and microorganisms to detoxify organic compounds. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 159–188

    Chapter  Google Scholar 

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C vulgaris (a commercial species) and C. miniata (a local isolate). Bioresour Technol 73:133–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Goto I, Kawaguchi O, Minagawa K, Ariyoshi E, Matsuda O (2008) Phytoremediation of shallow organically enriched marine sediments using benthic microalgae. Mar Pollut Bull 57:108–115

    Article  CAS  Google Scholar 

  • Yan H, Pan G (2002) Toxicity and bioaccumulation of copper in three green micro algal species. Chemosphere 49:471–476

    Article  CAS  Google Scholar 

  • Yuste L, Corbella ME, Turiegano MJ, Karlson U, Puyet A, Rojo F (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75

    Article  CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani MR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    Article  CAS  Google Scholar 

  • Zhang E, Wang B, Wang Q, Zhang S, Zhao B (2008) Ammonia– nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    Article  CAS  Google Scholar 

  • Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20:337–347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, N., Sharma, S., Dhasmana, A., Kumar, V. (2019). Phycoremediation of Pollutants for Ecosystem Restitution. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_3

Download citation

Publish with us

Policies and ethics