Skip to main content

Physiology of Myelinated Nerve Conduction and Pathophysiology of Demyelination

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Nerve conduction in myelinated axons is a fascinating subject due to the intricate structure and complex properties of the axon and its relation to the equally complex Schwann cells surrounding it. This chapter first deals with normal functional aspects of voltage-gated ion channels in the axon and Schwann cell membranes as well as their related proteins. Next, the pathophysiological alterations that are induced by experimental studies to mimic and study neuropathic disorders in humans are discussed. Finally, a link is made with human neuropathies associated with antibodies against gangliosides, and the putative mechanisms of axonal degeneration in demyelinating neuropathies are discussed. Although this chapter is relevant to understand symptoms in human neuropathies, the reader is referred to Franssen and Straver (Muscle Nerve 49:4–20, 2014) for a review of translational and clinical studies in human patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMAN:

Acute motor axonal neuropathy

AMP:

Adenine monophosphate

ATP:

Adenine triphosphate

cAMP:

Cyclic adenine triphosphate

CAP:

Compound action potential

Caspr:

Contactin-associated glycoprotein

CMAP:

Compound muscle action potential

Cx29:

Connexin-29

EAN:

Experimental allergic neuritis

ECF:

Extracellular fluid

ERM:

Ezrin-radixin-moesin

GD1a:

Ganglioside GD1a

GM1:

Ganglioside GM1

GT1b:

Ganglioside GT1b

HCN:

Hyperpolarization-activated cyclic-nucleotide-gated

HSPG:

Heparin-sulfate proteoglycan

Kv:

Voltage-gated potassium channel nomenclature

L-type:

Long-duration and large current generated by calcium channels

MAC:

Membrane attack complex

MAG:

Myelin-associated glycoprotein

MMN:

Multifocal motor neuropathy

Nav:

Voltage-gated sodium channel nomenclature

NF:

Neurofascin

NO:

Nitric oxide

Nr-CAM:

Neuronal cell adhesion molecule

P0:

Protein zero

P2:

Protein two

P2X:

Purinergic receptor nomenclature

PMP22:

Peripheral myelin protein twenty-two

T-type:

Transient and tiny current generated by calcium channels

References

  • Baker MD (2002) Electrophysiology of mammalian Schwann cells. Prog Biophys Mol Biol 78:83–103

    Article  CAS  PubMed  Google Scholar 

  • Baker M, Bostock H, Grafe P, Martius P (1987) Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol 383:45–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balice-Gordon RJ, Bone LJ, Scherer SS (1998) Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142:1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett EF, Barrett JN (1982) Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol 323:117–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthold CH, Rydmark M (1995) Morphology of normal peripheral axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The Axon. Oxford University Press, New York, pp 13–48

    Chapter  Google Scholar 

  • Blight AR (1985) Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neurosci 15:13–31

    Article  CAS  Google Scholar 

  • Bostock H, Grafe P (1985) Activity-dependent excitability changes in normal and demyelinated rat spinal root axons. J Physiol 365:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock H, Rothwell JC (1997) Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol 498(1):277–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock H, Sears TA (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol 280:273–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock H, Sears TA, Sherratt RM (1981) The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibers. J Physiol 313:301–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock H, Baker M, Reid G (1991) Changes in excitability of human motor axons underlying post-ischaemic fasciculations: evidence for two stable states. J Physiol 441:537–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brismar T (1991) Electrical properties of isolated demyelinated rat nerve fibers. Acta Physiol Scand 113:161–166

    Article  Google Scholar 

  • Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. PNAS 97:5616–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AJ, Kaller MS, Galino J, Willison HJ, Rinaldi S, Bennett DLH (2017) Co-cultures with stem cell-derived human sensory neurons reveal regulators of peripheral myelination. Brain 140:898–913

    Article  PubMed  PubMed Central  Google Scholar 

  • Court FA, Hendriks WTJ, MacGillavry HD, Alvarez J, Van Minnen J (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David G, Barrett JN, Barrett EF (1993) Activation of internodal potassium conductance in rat myelinated axons. J Physiol 472:177–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenhaeuser B, Moore LE (1963) The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J Physiol 169:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franssen H, Straver DCG (2013) Pathophysiology of immune-mediated demyelinating neuropathies – part I: neuroscience. Muscle Nerve 48:851–864

    Article  PubMed  Google Scholar 

  • Franssen H, Straver DCG (2014) Pathophysiology of immune-mediated demyelinating neuropathies – part II: neurology. Muscle Nerve 49:4–20

    Article  CAS  PubMed  Google Scholar 

  • Franssen H, Gebbink TA, Wokke JH, Van den Berg LH, Van Schelven LJ (2010) Is cold paresis related to axonal depolarization? J Periph Nerv Syst 15:227–237

    Article  Google Scholar 

  • Gong Y, Tagawa Y, Lunn MPT, Laroy W, Heffer-Lauc M, Li CY, Griffin JW, Schnaar RL, Sheikh KA (2002) Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain 125:2491–2506

    Article  CAS  PubMed  Google Scholar 

  • Grafe P, Mayer C, Takigawa T, Kamleiter M, Sanchez-Brandelik R (1999) Confocal calcium imaging reveals an inotropic P2 nucleotide receptor in the paranodal membrane of rat Schwann cells. J Physiol 515:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota N, Kaji R, Bostock H, Shindo K, Kawasaki T, Mizutani K, Oka N, Kohara N, Saida T, Kimura J (1997) The physiological effect of anti-GM1 antibodies on saltatory conduction and transmembrane currents in single motor axons. Brain 120:2159–2169

    Article  PubMed  Google Scholar 

  • IUPHAR (2005) Compendium of voltage-gated ion channels. Pharmacol Rev 57:385–540

    Article  Google Scholar 

  • Jonas P, Koh DS, Kampe K, Hermsteiner M, Vogel W (1991) ATP-sensitive and Ca-activated K channels in vertebrate axons: novel links between metabolism and excitability. Pflügers Arch 418:68–73

    Article  CAS  PubMed  Google Scholar 

  • Kaji R, Sumner AJ (1989) Ouabain reverses conduction disturbances in single demyelinated nerve fibers. Neurology 39:1364–1368

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–180

    Article  CAS  PubMed  Google Scholar 

  • Koles ZJ, Rasminsky M (1972) A computer simulation of conduction in demyelinated nerve fibres. J Physiol 227:351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonigro A, Devaux JJ (2009) Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain 132:260–273

    Article  PubMed  Google Scholar 

  • Low PA, McLeod JG (1997) Refractory period, conduction of trains of impulses, and effect of temperature on conduction in chronic hypertrophic neuropathy. J Neurol Neurosurg Psychiatry 40:434–447

    Article  Google Scholar 

  • Manso C, Querol L, Mekaouche M, Illa I, Devaux JJ (2016) Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain 139:1700–1712

    Article  PubMed  Google Scholar 

  • Martini R (2001) The effect of myelinating Schwann cells on axons. Muscle Nerve 24:456–466

    Article  CAS  PubMed  Google Scholar 

  • McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD, Rother RP, Furukawa K, Willison HJ (2010) Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 133:1944–1960

    Article  PubMed  Google Scholar 

  • Mi H, Deerinck TJ, Ellisman MH, Schwarz TL (1995) Differential distribution of closely related potassium channels in rat Schwann cells. J Neurosci 15:3761–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novakovic SD, Levinson SR, Schachner M, Shrager P (1998) Disruption and reorganization of sodium channels in experimental allergic neuritis. Muscle Nerve 21:1019–1032

    Article  CAS  PubMed  Google Scholar 

  • Nygren A, Halter JA (1999) A general approach to modeling conduction and concentration dynamics in excitable cells of concentric cylindrical geometry. J Theor Biol 199:329–358

    Article  CAS  PubMed  Google Scholar 

  • Ogawa-Goto K, Funamoto N, Abe T, Nagashima K (1990) Different ceramide compositions of gangliosides between human motor and sensory nerves. J Neurochem 55:1486–1493

    Article  CAS  PubMed  Google Scholar 

  • Paparounas K, O’Hanlon GM, O’Leary CP, Rowan EG, Willison HJ (1999) Anti-ganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro. Brain 122:807–816

    Article  PubMed  Google Scholar 

  • Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI (2016) Kv1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115:1836–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasminsky M (1973) The effects of temperature on conduction in demyelinated single nerve fibers. Arch Neurol 28:287–292

    Article  CAS  PubMed  Google Scholar 

  • Rasminsky M, Sears TA (1972) Internodal conduction in undissected demyelinated nerve fibers. J Physiol 227:323–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid G, Scholz A, Bostock H, Vogel W (1999) Human axons contain at least five types of voltage-dependent potassium channel. J Physiol 518(3):681–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie JM (1995) Physiology of axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The Axon. Oxford University Press, New York, pp 68–96

    Chapter  Google Scholar 

  • Saida K, Sumner AJ, Saida T, Brown MJ, Silberberg DH (1980) Antiserum-mediated demyelination: relationship between remyelination and functional recovery. Ann Neurol 8:12–24

    Article  CAS  PubMed  Google Scholar 

  • Salzer JL, Brophy PJ, Peles E (2008) Molecular domains of myelinated axons in the peripheral nervous system. Glia 56:1532–1540

    Article  PubMed  Google Scholar 

  • Santoro M, Uncini A, Corbo M, Staugaitis SM, Thomas FP, Hays AP, Latov N (1992) Experimental conduction block induced by serum from a patient with anti-GM1 antibodies. Ann Neurol 31:385–390

    Article  CAS  PubMed  Google Scholar 

  • Scherer SS, Arroyo EJ (2002) Recent progress on the molecular organization of myelinated axons. J Periph Nerv Syst 7:1–12

    Article  CAS  Google Scholar 

  • Schwarz JR, Eikhof G (1987) Na currents and action potentials in rat myelinated nerve fibers at 20 and 37 degrees C. Pflügers Arch 409:569–577

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JR, Corrette BJ, Mann K, Wiethölter H (1991) Changes of ionic channel distribution in myelinated nerve fibers from rats with experimental allergic neuritis. Neurosci Lett 122:205–209

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JR, Reid G, Bostock H (1995) Action potentials and membrane currents in the human node of Ranvier. Pflügers Arch 430:283–292

    Article  CAS  PubMed  Google Scholar 

  • Sheikh KA, Deerinck TJ, Ellisman MH, Griffin JW (1999) The distribution of ganglioside-like moieties in peripheral nerves. Brain 122:449–460

    Article  PubMed  Google Scholar 

  • Smith KJ, Bostock H, Hall SM (1982) Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J Neurol Sci 54:13–31

    Article  CAS  PubMed  Google Scholar 

  • Sumner AJ, Saida K, Saida T, Silberberg DH, Asbury AK (1982) Acute conduction block associated with experimental antiserum-mediated demyelination of peripheral nerve. Ann Neurol 11:469–477

    Article  CAS  PubMed  Google Scholar 

  • Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K, Hirata K, Baba H, Yuki N (2007) Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 27:3956–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susuki K, Yuki N, Schafer DP, Hirata K, Zhang G, Funakoshi K, Rasband MN (2012) Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp Neurol 233:534–542

    Article  CAS  PubMed  Google Scholar 

  • Takigawa T, Yasuda H, Kikkawa R, Shigata Y, Saida T, Kitsato H (1995) Antibodies against GM1 ganglioside affect K+ and Na+ currents in isolated rat myelinated nerve fibers. Ann Neurol 37:436–442

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I (1955) New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am J Phys 181:639–650

    Article  CAS  Google Scholar 

  • Von Reyn CR, Spaethling JM, Mesfin MN, Ma M, Neumar RW, Smith DH, Siman R, Meaney DF (2009) Calpain mediates proteolysis of the voltage-gated sodium channel α-subunit. J Neurosci 29:10350–10356

    Article  CAS  Google Scholar 

  • Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG, Kocsis JD, Black JA (1995) Pathophysiology of demyelinated axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The Axon. Oxford University Press, New York, pp 438–461

    Chapter  Google Scholar 

  • Wilson GF, Chiu SY (1990) Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp. J Neurosci 10:3263–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LMN, Williams A, Delaney A, Sherman DL, Brophy PJ (2012) Increasing internodal distance in myelinated nerves accelerates nerve conduction to a flat maximum. Curr Biol 22:1957–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, David G (2016) Stimulation-induced Ca2+ influx at nodes of Ranvier in mouse peripheral motor axons. J Physiol 594(1):39–57

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hessel Franssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franssen, H. (2019). Physiology of Myelinated Nerve Conduction and Pathophysiology of Demyelination. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_7

Download citation

Publish with us

Policies and ethics